Dewan Md. Farid
Dewan Md. Farid
Associate Professor, Dept. of Computer Science & Engineering, United International University
Dirección de correo verificada de cse.uiu.ac.bd - Página principal
Título
Citado por
Citado por
Año
Hybrid decision tree and naïve Bayes classifiers for multi-class classification tasks
DM Farid, L Zhang, CM Rahman, MA Hossain, R Strachan
Expert systems with applications 41 (4), 1937-1946, 2014
2952014
Combining naive bayes and decision tree for adaptive intrusion detection
DM Farid, N Harbi, MZ Rahman
arXiv preprint arXiv:1005.4496, 2010
1662010
An adaptive ensemble classifier for mining concept drifting data streams
DM Farid, L Zhang, A Hossain, CM Rahman, R Strachan, G Sexton, ...
Expert Systems with Applications 40 (15), 5895-5906, 2013
1402013
Feature selection and intrusion classification in NSL-KDD cup 99 dataset employing SVMs
MS Pervez, DM Farid
The 8th International Conference on Software, Knowledge, Information …, 2014
992014
Intelligent facial emotion recognition and semantic-based topic detection for a humanoid robot
L Zhang, M Jiang, D Farid, MA Hossain
Expert Systems with Applications 40 (13), 5160-5168, 2013
922013
Anomaly Network Intrusion Detection Based on Improved Self Adaptive Bayesian Algorithm.
DM Farid, MZ Rahman
JCP 5 (1), 23-31, 2010
892010
Application of machine learning approaches in intrusion detection system: a survey
NF Haq, AR Onik, MAK Hridoy, M Rafni, FM Shah, DM Farid
IJARAI-International Journal of Advanced Research in Artificial Intelligence …, 2015
712015
Adaptive intrusion detection based on boosting and naive bayesian classifier
CM Rahman, DM Farid, MZ Rahman
International Journal of Computer Applications, 2011
582011
iDTI-ESBoost: identification of drug target interaction using evolutionary and structural features with boosting
F Rayhan, S Ahmed, S Shatabda, DM Farid, Z Mousavian, A Dehzangi, ...
Scientific reports 7 (1), 1-18, 2017
542017
Attacks classification in adaptive intrusion detection using decision tree
CM Rahman, DM Farid, N Harbi, E Bahri, MZ Rahman
World Academy of Science, Engineering and Technology, 2010
532010
An adaptive rule-based classifier for mining big biological data
DM Farid, MA Al-Mamun, B Manderick, A Nowe
Expert Systems with Applications 64, 305-316, 2016
452016
Adaptive network intrusion detection learning: attribute selection and classification
D Farid, J Darmont, N Harbi, HH Nguyen, MZ Rahman
402009
Effective DNA binding protein prediction by using key features via Chou’s general PseAAC
S Adilina, DM Farid, S Shatabda
Journal of theoretical biology 460, 64-78, 2019
342019
Novel class detection in concept-drifting data stream mining employing decision tree
DM Farid, CM Rahman
2012 7th International Conference on Electrical and Computer Engineering …, 2012
282012
Learning intrusion detection based on adaptive bayesian algorithm
DM Farid, MZ Rahman
2008 11th International Conference on Computer and Information Technology …, 2008
262008
EvoStruct-Sub: An accurate Gram-positive protein subcellular localization predictor using evolutionary and structural features
MR Uddin, A Sharma, DM Farid, MM Rahman, A Dehzangi, S Shatabda
Journal of theoretical biology 443, 138-146, 2018
222018
Cusboost: Cluster-based under-sampling with boosting for imbalanced classification
F Rayhan, S Ahmed, A Mahbub, R Jani, S Shatabda, DM Farid
2017 2nd International Conference on Computational Systems and Information …, 2017
212017
Assigning weights to training instances increases classification accuracy
DM Farid, CM Rahman
International Journal of Data Mining & Knowledge Management Process 3 (1), 13, 2013
192013
Mining complex data streams: discretization, attribute selection and classification
DM Farid, CM Rahman
Journal of Advances in Information Technology 4 (3), 129-135, 2013
162013
iProtGly‐SS: Identifying protein glycation sites using sequence and structure based features
MM Islam, S Saha, MM Rahman, S Shatabda, DM Farid, A Dehzangi
Proteins: Structure, Function, and Bioinformatics 86 (7), 777-789, 2018
152018
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20