Multiple importance sampling elbo and deep ensembles of variational approximations O Kviman, H Melin, H Koptagel, V Elvira, J Lagergren International Conference on Artificial Intelligence and Statistics, 10687-10702, 2022 | 25 | 2022 |
Vaiphy: a variational inference based algorithm for phylogeny H Koptagel, O Kviman, H Melin, N Safinianaini, J Lagergren Advances in Neural Information Processing Systems 35, 14758-14770, 2022 | 18 | 2022 |
Cooperation in the latent space: The benefits of adding mixture components in variational autoencoders O Kviman, R Molén, A Hotti, S Kurt, V Elvira, J Lagergren International Conference on Machine Learning, 18008-18022, 2023 | 13* | 2023 |
Improved variational bayesian phylogenetic inference using mixtures R Molén, O Kviman, J Lagergren Transactions on Machine Learning Research, 2024 | 5* | 2024 |
Variational resampling O Kviman, N Branchini, V Elvira, J Lagergren International Conference on Artificial Intelligence and Statistics, 3286-3294, 2024 | 3 | 2024 |
Indirectly Parameterized Concrete Autoencoders A Nilsson, K Wijk, E Englesson, A Hotti, C Saccardi, O Kviman, ... arXiv preprint arXiv:2403.00563, 2024 | 3 | 2024 |
Efficient Mixture Learning in Black-Box Variational Inference A Hotti, O Kviman, R Molén, V Elvira, J Lagergren Proceedings of the 41st International Conference on Machine Learning, 2024 | 2 | 2024 |
Sequence Disambiguation with Synaptic Traces in Associative Neural Networks RH Martinez, O Kviman, A Lansner, P Herman Artificial Neural Networks and Machine Learning–ICANN 2019: Theoretical …, 2019 | 1 | 2019 |
KL/TV Reshuffling: Statistical Distance Based Offspring Selection in SMC Methods O Kviman | | 2022 |
Applicability of a Translucent Barrier Based Model of Noise O Kviman, L Nilsson | | 2018 |
[Re] Tensor Monte Carlo: Particle Methods for the GPU Era O Kviman, L Nilsson, M Larsson | | |