Uniqueness of the blow-up boundary solution of logistic equations with absorbtion FC Cîrstea, VD Rădulescu Comptes rendus. Mathématique 335 (5), 447-452, 2002 | 157 | 2002 |

Nonlinear problems with boundary blow-up: a Karamata regular variation theory approach FC Cîrstea, V Rădulescu Asymptotic Analysis 46 (3-4), 275-298, 2006 | 95 | 2006 |

Existence and uniqueness of blow-up solutions for a class of logistic equations FC Cîrstea, VD Rădulescu Communications in Contemporary Mathematics 4 (03), 559-586, 2002 | 94 | 2002 |

Asymptotics for the blow-up boundary solution of the logistic equation with absorption FC Cîrstea, V Rădulescu Comptes Rendus Mathematique 336 (3), 231-236, 2003 | 87 | 2003 |

General uniqueness results and variation speed for blow-up solutions of elliptic equations FC Cîrstea, Y Du Proceedings of the London Mathematical Society 91 (2), 459-482, 2005 | 84 | 2005 |

Combined effects of asymptotically linear and singular nonlinearities in bifurcation problems of Lane–Emden–Fowler type F Cîrstea, M Ghergu, V Rădulescu Journal de mathématiques pures et appliquées 84 (4), 493-508, 2005 | 79 | 2005 |

Entire solutions blowing up at infinity for semilinear elliptic systems FC Cîrstea, VD Rădulescu Journal de mathématiques pures et appliquées 81 (9), 827-846, 2002 | 77 | 2002 |

Blow-up boundary solutions of semilinear elliptic problems FC Cîrstea, VD Rǎdulescu Nonlinear Analysis: Theory, Methods & Applications 48 (4), 521-534, 2002 | 74 | 2002 |

Boundary blow-up in nonlinear elliptic equations of Bieberbach–Rademacher type FC Cîrstea, V Rădulescu Transactions of the American Mathematical Society 359 (7), 3275-3286, 2007 | 72 | 2007 |

Extremal singular solutions for degenerate logistic-type equations in anisotropic media FC Cîrstea, V Rădulescu Comptes Rendus Mathematique 339 (2), 119-124, 2004 | 53 | 2004 |

Solutions with boundary blow-up for a class of nonlinear elliptic problems F Cîrstea, V Radulescu Houston J. Math 29 (3), 821-829, 2003 | 49 | 2003 |

Weak solutions of quasilinear problems with nonlinear boundary condition FC Cîrstea, D Motreanu, V Rădulescu Nonlinear Analysis: Theory, Methods & Applications 43 (5), 623-636, 2001 | 48 | 2001 |

Existence and uniqueness of positive solutions to a semilinear elliptic problem in R N FC Cîrstea, VD Rădulescu Journal of mathematical analysis and applications 229 (2), 417-425, 1999 | 46 | 1999 |

Nonlinear Liouville theorems in the Heisenberg group via the moving plane method I Birindelli, J Prajapat | 41 | 1999 |

Elliptic equations with competing rapidly varying nonlinearities and boundary blow-up FC Cîrstea Advances in Differential Equations 12 (9), 995-1030, 2007 | 34 | 2007 |

A complete classification of the isolated singularities for nonlinear elliptic equations with inverse square potentials FC Cîrstea Memoirs of the American Mathematical Society 227 (1068), 2014 | 29 | 2014 |

Isolated singularities for weighted quasilinear elliptic equations FC Cîrstea, Y Du Journal of Functional Analysis 259 (1), 174-202, 2010 | 21 | 2010 |

On the Monge–Ampère equation with boundary blow-up: existence, uniqueness and asymptotics FC Cîrstea, C Trombetti Calculus of Variations and Partial Differential Equations 31 (2), 167, 2008 | 20 | 2008 |

Large solutions of elliptic equations with a weakly superlinear nonlinearity FC Cîrstea, Y Du Journal d'Analyse Mathématique 103 (1), 261-277, 2007 | 17 | 2007 |

Asymptotic behavior of solutions of semilinear elliptic equations near an isolated singularity FC Cîrstea, Y Du Journal of Functional Analysis 250 (2), 317-346, 2007 | 16 | 2007 |