Jerry Li
Jerry Li
Microsoft Research
Verified email at mit.edu - Homepage
Title
Cited by
Cited by
Year
QSGD: Communication-Efficient SGD via Gradient Quantization and Encoding
D Alistarh, D Grubic, J Li, R Tomioka, M Vojnovic
Advances in Neural Information Processing Systems, 1707-1718, 2017
544*2017
Robust estimators in high-dimensions without the computational intractability
I Diakonikolas, G Kamath, D Kane, J Li, A Moitra, A Stewart
SIAM Journal on Computing 48 (2), 742-864, 2019
2302019
Zipml: Training linear models with end-to-end low precision, and a little bit of deep learning
H Zhang, J Li, K Kara, D Alistarh, J Liu, C Zhang
International Conference on Machine Learning, 4035-4043, 2017
132*2017
Provably robust deep learning via adversarially trained smoothed classifiers
H Salman, G Yang, J Li, P Zhang, H Zhang, I Razenshteyn, S Bubeck
arXiv preprint arXiv:1906.04584, 2019
1232019
Spectral signatures in backdoor attacks
B Tran, J Li, A Madry
arXiv preprint arXiv:1811.00636, 2018
1212018
Being robust (in high dimensions) can be practical
I Diakonikolas, G Kamath, DM Kane, J Li, A Moitra, A Stewart
International Conference on Machine Learning, 999-1008, 2017
1162017
Sever: A robust meta-algorithm for stochastic optimization
I Diakonikolas, G Kamath, D Kane, J Li, J Steinhardt, A Stewart
International Conference on Machine Learning, 1596-1606, 2019
1062019
The spraylist: A scalable relaxed priority queue
D Alistarh, J Kopinsky, J Li, N Shavit
Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice of …, 2015
1032015
Byzantine stochastic gradient descent
D Alistarh, Z Allen-Zhu, J Li
arXiv preprint arXiv:1803.08917, 2018
1012018
Robustly learning a gaussian: Getting optimal error, efficiently
I Diakonikolas, G Kamath, DM Kane, J Li, A Moitra, A Stewart
Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete …, 2018
822018
Computationally efficient robust sparse estimation in high dimensions
S Balakrishnan, SS Du, J Li, A Singh
Conference on Learning Theory, 169-212, 2017
81*2017
Mixture models, robustness, and sum of squares proofs
SB Hopkins, J Li
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing …, 2018
682018
Sample-optimal density estimation in nearly-linear time
J Acharya, I Diakonikolas, J Li, L Schmidt
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete …, 2017
622017
On the limitations of first-order approximation in gan dynamics
J Li, A Madry, J Peebles, L Schmidt
International Conference on Machine Learning, 3005-3013, 2018
61*2018
Fast and near-optimal algorithms for approximating distributions by histograms
J Acharya, I Diakonikolas, C Hegde, JZ Li, L Schmidt
Proceedings of the 34th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of …, 2015
362015
Privately learning high-dimensional distributions
G Kamath, J Li, V Singhal, J Ullman
Conference on Learning Theory, 1853-1902, 2019
342019
Robust and proper learning for mixtures of gaussians via systems of polynomial inequalities
J Li, L Schmidt
Conference on Learning Theory, 1302-1382, 2017
33*2017
Communication-efficient distributed learning of discrete distributions
I Diakonikolas, E Grigorescu, J Li, A Natarajan, K Onak, L Schmidt
NIPS, 2017
302017
Quantum entropy scoring for fast robust mean estimation and improved outlier detection
Y Dong, SB Hopkins, J Li
arXiv preprint arXiv:1906.11366, 2019
272019
Lower bounds for exact model counting and applications in probabilistic databases
P Beame, J Li, S Roy, D Suciu
arXiv preprint arXiv:1309.6815, 2013
242013
The system can't perform the operation now. Try again later.
Articles 1–20