[IMG align=ABSMIDDLE alt=]tex_rm_609_img1[/IMG]-solutions of the Navier-Stokes equations and backward uniqueness L Escauriaza, GA Seregin, V Sverak Russian Mathematical Surveys 58 (2), 211-250, 2003 | 674 | 2003 |

On partial regularity of suitable weak solutions to the three-dimensional Navier—Stokes equations OA Ladyzhenskaya, GA Seregin Journal of Mathematical Fluid Mechanics 1 (4), 356-387, 1999 | 245 | 1999 |

Variational methods for problems from plasticity theory and for generalized Newtonian fluids M Fuchs, G Seregin Springer Science & Business Media, 2000 | 236 | 2000 |

Liouville theorems for the Navier–Stokes equations and applications G Koch, N Nadirashvili, GA Seregin, V Šverák Acta Mathematica 203 (1), 83-105, 2009 | 214 | 2009 |

Backward uniqueness for parabolic equations L Escauriaza, G Seregin, V Šverák Archive for rational mechanics and analysis 169 (2), 147-157, 2003 | 204 | 2003 |

Partial differential equations of mathematical physics T Myint-u CUP Archive, 1978 | 185 | 1978 |

Regularity results for parabolic systems related to a class of non-Newtonian fluids E Acerbi, G Mingione, GA Seregin Annales de l'Institut Henri Poincare (C) Non Linear Analysis 21 (1), 25-60, 2004 | 183 | 2004 |

Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions MD Gunzburger, HC Lee, GA Seregin Journal of Mathematical Fluid Mechanics 2 (3), 219-266, 2000 | 170 | 2000 |

Oxidant-controlled regioselectivity in the oxidative arylation of N-acetylindoles S Potavathri, AS Dumas, TA Dwight, GR Naumiec, JM Hammann, ... Tetrahedron letters 49 (25), 4050-4053, 2008 | 158 | 2008 |

Local-in-space estimates near initial time for weak solutions of the Navier-Stokes equations and forward self-similar solutions H Jia, V Šverák Inventiones mathematicae 196 (1), 233-265, 2014 | 103 | 2014 |

Navier-Stokes equations with lower bounds on the pressure G Seregin, V Šverák Archive for rational mechanics and analysis 163 (1), 65-86, 2002 | 100 | 2002 |

On type I singularities of the local axi-symmetric solutions of the Navier–Stokes equations G Seregin, V Šverák Communications in Partial Differential Equations 34 (2), 171-201, 2009 | 92 | 2009 |

Local regularity of suitable weak solutions to the Navier—Stokes equations near the boundary GA Seregin Journal of Mathematical Fluid Mechanics 4 (1), 1-29, 2002 | 91 | 2002 |

A certain necessary condition of potential blow up for Navier-Stokes equations G Seregin arXiv preprint arXiv:1104.3615, 2011 | 90 | 2011 |

On divergence-free drifts G Seregin, L Silvestre, V Šverák, A Zlatoš Journal of Differential Equations 252 (1), 505-540, 2012 | 80 | 2012 |

An alternative approach to regularity for the Navier–Stokes equations in critical spaces CE Kenig, GS Koch Annales de l'IHP Analyse non linéaire 28 (2), 159-187, 2011 | 68 | 2011 |

Regularity of solutions to variational problems of the deformation theory of plasticity with logarithmic hardening GA Seregin, J Frehse, ... Translations of the American Mathematical Society-Series 2 193, 127-152, 1999 | 67 | 1999 |

Backward uniqueness for the heat operator in a half-space L Escauriaza, G Seregin, V Šverak St. Petersburg Mathematical Journal 15 (1), 139-148, 2004 | 65 | 2004 |

The real butterfly effect TN Palmer, A Döring, G Seregin Nonlinearity 27 (9), R123, 2014 | 64 | 2014 |

A regularity theory for variational integrals with -Growth M Fuchs, G Seregin Calculus of Variations and Partial Differential Equations 6 (2), 171-187, 1998 | 61 | 1998 |