Jens-Peter M. Zemke
TitleCited byYear
Flexible and multi‐shift induced dimension reduction algorithms for solving large sparse linear systems
MB van Gijzen, GLG Sleijpen, JPM Zemke
Numerical Linear Algebra with Applications 22 (1), 1-25, 2015
462015
Eigenvalue computations based on IDR
MH Gutknecht, JPM Zemke
SIAM Journal on Matrix Analysis and Applications 34 (2), 283-311, 2013
302013
Krylov subspace methods in finite precision: a unified approach
JPM Zemke
Technische Universität Hamburg, 2003
242003
Hessenberg eigenvalue–eigenmatrix relations
JPM Zemke
Linear algebra and its applications 414 (2-3), 589-606, 2006
222006
On eigenvector bounds
SM Rump, JPM Zemke
BIT Numerical Mathematics 43 (4), 823-837, 2003
212003
b4m: A free interval arithmetic toolbox for MATLAB based on BIAS
J Zemke
Technical report, Technische Universitaet Hamburg, 0
18*
IDR: A new generation of Krylov subspace methods?
O Rendel, A Rizvanolli, JPM Zemke
Linear Algebra and its Applications 439 (4), 1040-1061, 2013
112013
Abstract perturbed Krylov methods
JPM Zemke
Preprints des Institutes für Mathematik, 2005
92005
An augmented analysis of the perturbed two-sided Lanczos tridiagonalization process
CC Paige, I Panayotov, JPM Zemke
Linear Algebra and its Applications 447, 119-132, 2014
82014
b4m-a free interval arithmetic toolbox for matlab based on BIAS, version 1.02. 004
J Zemke
2008-04-23]. http://www. ti3. tu-harburg. de/zemke/b4m/index. html, 1998
61998
b4m-BIAS for Matlab
J Zemke
Erhaltlich unter der Internet-Adresse http://www. ti3. tu-harburg. de, 1998
61998
eigenvalue–eigenmatrix relations
JPM Zemke
Report 78, 4-13, 0
4
Eigenvalue computations based on IDR, Bericht 145, TUHH, Institute of Numerical Simulation, May 2010
MH Gutknecht, JPM Zemke
4
Tuning IDR to fit your applications
O Rendel, JPM Zemke
3*
On structured pencils arising in Sonneveld methods
JPM Zemke
Preprints des Institutes für Mathematik, 2014
12014
Numerische Verfahren
JPM Zemke
12008
How orthogonality is lost in Krylov methods
JPM Zemke
Symbolic Algebraic Methods and Verification Methods, 255-266, 2001
12001
Variants of IDR with partial orthonormalization
JPM Zemke
Electronic Transactions on Numerical Analysis 46, 245-272, 2017
2017
IDR VERSUS OTHER KRYLOV SUBSPACE SOLVERS (The latest developments in theory and application on scientific computation)
JPM Zemke
京都大学数理解析研究所, 2012
2012
IDR: A new generation of Krylov subspace methods?
JPM Zemke
2011
The system can't perform the operation now. Try again later.
Articles 1–20