The Burgers equation on the semi-infinite and finite intervals F Calogero, S De Lillo Nonlinearity 2 (1), 37, 1989 | 69 | 1989 |

The Eckhaus PDE iψt+ ψxx+ 2 (| ψ| 2) xψ+| ψ| 4ψ= 0 F Calogero, S De Lillo Inverse problems 3 (4), 633, 1987 | 53 | 1987 |

Collective learning modeling based on the kinetic theory of active particles D Burini, S De Lillo, L Gibelli Physics of life reviews 16, 123-139, 2016 | 45 | 2016 |

Modelling epidemics and virus mutations by methods of the mathematical kinetic theory for active particles S De Lillo, M Delitala, MC Salvatori Mathematical Models and Methods in Applied Sciences 19 (supp01), 1405-1425, 2009 | 43 | 2009 |

Modeling human behavior in economics and social science M Dolfin, L Leonida, N Outada Physics of life reviews 22, 1-21, 2017 | 35 | 2017 |

Forced and semiline solutions of the Burgers equation MJ Ablowitz, S De Lillo Physics Letters A 156 (9), 483-487, 1991 | 31 | 1991 |

The Burgers equation on the semiline with general boundary conditions at the origin F Calogero, S De Lillo Journal of mathematical physics 32 (1), 99-105, 1991 | 28 | 1991 |

Mathematical tools of the kinetic theory of active particles with some reasoning on the modelling progression and heterogeneity S De Lillo, MC Salvatori, N Bellomo Mathematical and computer modelling 45 (5-6), 564-578, 2007 | 25 | 2007 |

Cauchy problems on the semiline and on a finite interval for the Eckhaus equation F Calogero, S De Lillo Inverse Problems 4 (4), L33, 1988 | 25 | 1988 |

The Dirichlet-to- Neumann map for the heat equation on a moving boundary S De Lillo, AS Fokas Inverse Problems 23 (4), 1699-710, 2007 | 22 | 2007 |

The Burgers equation under deterministic and stochastic forcing MJ Ablowitz, S De Lillo Physica D: Nonlinear Phenomena 92 (3-4), 245-259, 1996 | 22 | 1996 |

On a Burgers-Stefan problem MJ Ablowitz, S De Lillo Nonlinearity 13 (2), 471, 2000 | 20 | 2000 |

On the modeling of collective learning dynamics S De Lillo, N Bellomo Applied Mathematics Letters 24 (11), 1861-1866, 2011 | 19 | 2011 |

Kink-size dependent bound states in modified Sine-gordon models S De Lillo, P Sodano Lettere al Nuovo Cimento 37, 380-384, 1983 | 18 | 1983 |

Burgers equation on the semiline F Calogero, S De Lillo Inverse problems 5 (4), L37, 1989 | 15 | 1989 |

The Burgers equation under multiplicative noise S De Lillo Physics Letters A 188 (4-6), 305-308, 1994 | 14 | 1994 |

Learning dynamics towards modeling living systems: Reply to comments on" Collective learning modeling based on the kinetic theory of active particles". D Burini, S De Lillo, L Gibelli Physics of life reviews 16, 158, 2016 | 12 | 2016 |

Influence of drivers ability in a discrete vehicular traffic model D Burini, S De Lillo, G Fioriti International Journal of Modern Physics C 28 (03), 1750030, 2017 | 11 | 2017 |

Elastic rods in life-and material-sciences: A general integrable model M Argeri, V Barone, S De Lillo, G Lupo, M Sommacal Physica D: Nonlinear Phenomena 238 (13), 1031-1049, 2009 | 11 | 2009 |

Solutions of a Burgers–Stefan problem MJ Ablowitz, S De Lillo Physics Letters A 271 (4), 273-276, 2000 | 11 | 2000 |