Sebastian W. Ober
Sebastian W. Ober
Verified email at
Cited by
Cited by
Bayesian neural network priors revisited
V Fortuin, A Garriga-Alonso, SW Ober, F Wenzel, G Rätsch, RE Turner, ...
arXiv preprint arXiv:2102.06571, 2021
The promises and pitfalls of deep kernel learning
SW Ober, CE Rasmussen, M van der Wilk
Uncertainty in Artificial Intelligence, 1206-1216, 2021
Global inducing point variational posteriors for bayesian neural networks and deep gaussian processes
SW Ober, L Aitchison
International Conference on Machine Learning, 8248-8259, 2021
Benchmarking the Neural Linear Model for Regression
SW Ober, CE Rasmussen
arXiv preprint arXiv:1912.08416, 2019
Understanding Variational Inference in Function-Space
DR Burt, SW Ober, A Garriga-Alonso, M van der Wilk
arXiv preprint arXiv:2011.09421, 2020
Deep kernel processes
L Aitchison, A Yang, SW Ober
International Conference on Machine Learning, 130-140, 2021
Modeling and detecting student attention and interest level using wearable computers
Z Zhu, S Ober, R Jafari
2017 IEEE 14th international conference on wearable and implantable body …, 2017
Last Layer Marginal Likelihood for Invariance Learning
P Schwöbel, M Jørgensen, SW Ober, M Van Der Wilk
International Conference on Artificial Intelligence and Statistics, 3542-3555, 2022
Inducing point allocation for sparse gaussian processes in high-throughput bayesian optimisation
HB Moss, SW Ober, V Picheny
International Conference on Artificial Intelligence and Statistics, 5213-5230, 2023
Trieste: Efficiently Exploring The Depths of Black-box Functions with TensorFlow
V Picheny, J Berkeley, HB Moss, H Stojic, U Granta, SW Ober, A Artemev, ...
arXiv preprint arXiv:2302.08436, 2023
An improved variational approximate posterior for the deep wishart process
SW Ober, B Anson, E Milsom, L Aitchison
Uncertainty in Artificial Intelligence, 1555-1563, 2023
Information-theoretic Inducing Point Placement for High-throughput Bayesian Optimisation
HB Moss, SW Ober, V Picheny
arXiv preprint arXiv:2206.02437, 2022
A variational approximate posterior for the deep Wishart process
SW Ober, L Aitchison
Thirty-Fifth Conference on Neural Information Processing Systems, 2021
Recommendations for Baselines and Benchmarking Approximate Gaussian Processes
SW Ober, DR Burt, A Artemev, M van der Wilk
NeurIPS Workshop on Gaussian Processes, Spatiotemporal Modeling, and …, 2022
Towards Improved Variational Inference for Deep Bayesian Models
SW Ober
The system can't perform the operation now. Try again later.
Articles 1–15