Asynchronous methods for deep reinforcement learning V Mnih, AP Badia, M Mirza, A Graves, T Lillicrap, T Harley, D Silver, ... International conference on machine learning, 1928-1937, 2016 | 2490 | 2016 |
Hybrid computing using a neural network with dynamic external memory A Graves, G Wayne, M Reynolds, T Harley, I Danihelka, ... Nature 538 (7626), 471, 2016 | 720 | 2016 |
Imagination-augmented agents for deep reinforcement learning S Racaničre, T Weber, D Reichert, L Buesing, A Guez, DJ Rezende, ... Advances in neural information processing systems, 5690-5701, 2017 | 206* | 2017 |
Neural episodic control A Pritzel, B Uria, S Srinivasan, AP Badia, O Vinyals, D Hassabis, ... Proceedings of the 34th International Conference on Machine Learning-Volume …, 2017 | 107 | 2017 |
Memory-based parameter adaptation P Sprechmann, SM Jayakumar, JW Rae, A Pritzel, AP Badia, B Uria, ... arXiv preprint arXiv:1802.10542, 2018 | 27 | 2018 |
Quantitative shutter construction system and installation method HS Lee US Patent App. 10/346,741, 2004 | 8 | 2004 |
Neural episodic control B Uria-Martķnez, A Pritzel, C Blundell, AP Badia US Patent App. 16/445,523, 2019 | | 2019 |
Asynchronous deep reinforcement learning V Mnih, AP Badia, AB Graves, TJA Harley, D Silver, K Kavukcuoglu US Patent App. 16/403,388, 2019 | | 2019 |
Generalization of Reinforcement Learners with Working and Episodic Memory M Fortunato, M Tan, R Faulkner, S Hansen, AP Badia, G Buttimore, ... Advances in Neural Information Processing Systems, 12448-12457, 2019 | | 2019 |