Follow
Miha Skalic
Miha Skalic
Verified email at boehringer-ingelheim.com
Title
Cited by
Cited by
Year
KDEEP: Protein–Ligand Absolute Binding Affinity Prediction via 3D-Convolutional Neural Networks
J Jiménez, M Skalic, G Martinez-Rosell, G De Fabritiis
Journal of chemical information and modeling 58 (2), 287-296, 2018
8662018
SUPPA2: fast, accurate, and uncertainty-aware differential splicing analysis across multiple conditions
JL Trincado, JC Entizne, G Hysenaj, B Singh, M Skalic, DJ Elliott, E Eyras
Genome biology 19, 1-11, 2018
5052018
Shape-based generative modeling for de novo drug design
M Skalic, J Jiménez, D Sabbadin, G De Fabritiis
Journal of chemical information and modeling 59 (3), 1205-1214, 2019
2302019
From target to drug: generative modeling for the multimodal structure-based ligand design
M Skalic, D Sabbadin, B Sattarov, S Sciabola, G De Fabritiis
Molecular pharmaceutics 16 (10), 4282-4291, 2019
1252019
Coloring molecules with explainable artificial intelligence for preclinical relevance assessment
J Jiménez-Luna, M Skalic, N Weskamp, G Schneider
Journal of Chemical Information and Modeling 61 (3), 1083-1094, 2021
752021
LigVoxel: inpainting binding pockets using 3D-convolutional neural networks
M Skalic, A Varela-Rial, J Jiménez, G Martínez-Rosell, G De Fabritiis
Bioinformatics 35 (2), 243-250, 2019
692019
PlayMolecule BindScope: large scale CNN-based virtual screening on the web
M Skalic, G Martínez-Rosell, J Jiménez, G De Fabritiis
Bioinformatics 35 (7), 1237-1238, 2019
602019
Benchmarking molecular feature attribution methods with activity cliffs
J Jiménez-Luna, M Skalic, N Weskamp
Journal of Chemical Information and Modeling 62 (2), 274-283, 2022
302022
Building a size constrained predictive model for video classification
M Skalic, D Austin
Proceedings of the European Conference on Computer Vision (ECCV) Workshops, 0-0, 2018
292018
The inclusive images competition
J Atwood, Y Halpern, P Baljekar, E Breck, D Sculley, P Ostyakov, ...
The NeurIPS'18 Competition: From Machine Learning to Intelligent …, 2020
242020
Transcriptomics unravels the adaptive molecular mechanisms of Brettanomyces bruxellensis under SO2 stress in wine condition
F Valdetara, M Škalič, D Fracassetti, M Louw, C Compagno, M Du Toit, ...
Food microbiology 90, 103483, 2020
152020
Deep learning methods for efficient large scale video labeling
M Skalic, M Pekalski, XE Pan
arXiv preprint arXiv:1706.04572, 2017
152017
Multi‐Task ADME/PK prediction at industrial scale: leveraging large and diverse experimental datasets
M Walter, JM Borghardt, L Humbeck, M Skalic
Molecular Informatics 43 (10), e202400079, 2024
42024
Fast and accurate differential splicing analysis across multiple conditions with replicates
JC Entizne, JL Trincado, G Hysenaj, B Singh, M Skalic, DJ Elliott, E Eyras
bioRxiv, 086876, 2016
32016
The Inclusive Images Competition
D Sculley, E Breck, I Ivanov, J Atwood, M Skalic, P Baljekar, P Ostyakov, ...
22019
Deep learning for drug design: modeling molecular shapes
M Skalic
Universitat Pompeu Fabra, 2019
12019
In silico PK predictions in Drug Discovery: Benchmarking of Strategies to Integrate Machine Learning with Empiric and Mechanistic PK modelling
M Walter, G Aljayyoussi, B Gerner, H Rapp, CS Tautermann, P Balazki, ...
bioRxiv, 2024.07. 30.605777, 2024
2024
Benchmarking molecular feature attribution methods with activity cliffs
JJ Luna, M Skalic, N Weskamp
2021
Learning to Localize Temporal Events in Large-scale Video Data
M Bober-Irizar, M Skalic, D Austin
arXiv preprint arXiv:1910.11631, 2019
2019
SUPPA2: fast, accurate, and uncertainty-aware differential splicing analysis across multiple conditions
JL Trincado Alonso, JC Entizne, G Hysenaj, B Singh, M Skalic, D Elliott, ...
Genome Biology. 2018 Dec; 19 (1): 40, 2018
2018
The system can't perform the operation now. Try again later.
Articles 1–20