Follow
Scott Lundberg
Scott Lundberg
Google DeepMind
Verified email at google.com - Homepage
Title
Cited by
Cited by
Year
A unified approach to interpreting model predictions
SM Lundberg, SI Lee
Advances in neural information processing systems 30, 2017
173692017
From local explanations to global understanding with explainable AI for trees
SM Lundberg, G Erion, H Chen, A DeGrave, JM Prutkin, B Nair, R Katz, ...
Nature machine intelligence 2 (1), 56-67, 2020
32242020
Consistent individualized feature attribution for tree ensembles
SM Lundberg, GG Erion, SI Lee
arXiv preprint arXiv:1802.03888, 2018
14922018
Explainable machine-learning predictions for the prevention of hypoxaemia during surgery
SM Lundberg, B Nair, MS Vavilala, M Horibe, MJ Eisses, T Adams, ...
Nature biomedical engineering 2 (10), 749-760, 2018
11792018
Sparks of artificial general intelligence: Early experiments with gpt-4
S Bubeck, V Chandrasekaran, R Eldan, J Gehrke, E Horvitz, E Kamar, ...
arXiv preprint arXiv:2303.12712, 2023
9682023
Explainable AI for trees: From local explanations to global understanding
SM Lundberg, G Erion, H Chen, A DeGrave, JM Prutkin, B Nair, R Katz, ...
arXiv preprint arXiv:1905.04610, 2019
3072019
A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia
SI Lee, S Celik, BA Logsdon, SM Lundberg, TJ Martins, VG Oehler, ...
Nature communications 9 (1), 42, 2018
2652018
Understanding global feature contributions with additive importance measures
I Covert, SM Lundberg, SI Lee
Advances in Neural Information Processing Systems 33, 17212-17223, 2020
2132020
Explaining by removing: A unified framework for model explanation
IC Covert, S Lundberg, SI Lee
The Journal of Machine Learning Research 22 (1), 9477-9566, 2021
1732021
Visualizing the impact of feature attribution baselines
P Sturmfels, S Lundberg, SI Lee
Distill 5 (1), e22, 2020
1662020
Improving performance of deep learning models with axiomatic attribution priors and expected gradients
G Erion, JD Janizek, P Sturmfels, SM Lundberg, SI Lee
Nature machine intelligence 3 (7), 620-631, 2021
1512021
An unexpected unity among methods for interpreting model predictions
S Lundberg, SI Lee
arXiv preprint arXiv:1611.07478, 2016
1402016
True to the model or true to the data?
H Chen, JD Janizek, S Lundberg, SI Lee
arXiv preprint arXiv:2006.16234, 2020
1322020
Consistent feature attribution for tree ensembles
SM Lundberg, SI Lee
arXiv preprint arXiv:1706.06060, 2017
1312017
A unified approach to interpreting model predictions. arXiv 2017
S Lundberg, SI Lee
arXiv preprint arXiv:1705.07874, 2022
1162022
Explaining models by propagating Shapley values of local components
H Chen, S Lundberg, SI Lee
Explainable AI in Healthcare and Medicine: Building a Culture of …, 2021
932021
Shapley flow: A graph-based approach to interpreting model predictions
J Wang, J Wiens, S Lundberg
International Conference on Artificial Intelligence and Statistics, 721-729, 2021
892021
Consistent individualized feature attribution for tree ensembles. arXiv 2018
SM Lundberg, GG Erion, SI Lee
arXiv preprint arXiv:1802.03888, 1802
861802
A unified approach to interpreting model predictions. In 31st Annual Conference on Neural Information Processing Systems (NIPS). Long Beach, CA
S Lundberg, SI Lee
Neural Information Processing Systems (Nips) Long Beach, CA, 2017
812017
Sparks of artificial general intelligence: early experiments with GPT-4. arXiv
S Bubeck, V Chandrasekaran, R Eldan, J Gehrke, E Horvitz, E Kamar, ...
802023
The system can't perform the operation now. Try again later.
Articles 1–20