Christoph Schmal
Christoph Schmal
Independent Research Fellow, Humboldt-University, Berlin
Verified email at - Homepage
Cited by
Cited by
Lymphocyte circadian clocks control lymph node trafficking and adaptive immune responses
D Druzd, O Matveeva, L Ince, U Harrison, W He, C Schmal, H Herzel, ...
Immunity 46 (1), 120-132, 2017
The choroid plexus is an important circadian clock component
J Myung, C Schmal, S Hong, Y Tsukizawa, P Rose, Y Zhang, ...
Nature communications 9 (1), 1-13, 2018
A Circadian Clock-Regulated Toggle Switch Explains AtGRP7 and AtGRP8 Oscillations in Arabidopsis thaliana
C Schmal, P Reimann, D Staiger
PLoS Computational Biology 9 (3), e1002986, 2013
A theoretical study on seasonality
C Schmal, J Myung, H Herzel, G Bordyugov
Frontiers in neurology 6, 94, 2015
Measuring relative coupling strength in circadian systems
C Schmal, ED Herzog, H Herzel
Journal of biological rhythms 33 (1), 84-98, 2018
Moran’s I quantifies spatio-temporal pattern formation in neural imaging data
C Schmal, J Myung, H Herzel, G Bordyugov
Bioinformatics 33 (19), 3072-3079, 2017
Clocks in the wild: entrainment to natural light
C Schmal, H Herzel, J Myung
Frontiers in physiology 11, 272, 2020
Boolean networks with robust and reliable trajectories
C Schmal, TP Peixoto, B Drossel
New Journal of Physics 12 (11), 113054, 2010
Amplitude effects allow short jet lags and large seasonal phase shifts in minimal clock models
B Ananthasubramaniam, C Schmal, H Herzel
Journal of Molecular Biology 432 (12), 3722-3737, 2020
Weak coupling between intracellular feedback loops explains dissociation of clock gene dynamics
C Schmal, D Ono, J Myung, JP Pett, S Honma, KI Honma, H Herzel, ...
PLoS computational biology 15 (9), e1007330, 2019
Modeling and simulating the Arabidopsis thaliana circadian clock using XPP-AUTO
C Schmal, JC Leloup, D Gonze
Plant Circadian Networks, 337-358, 2014
The plant leaf movement analyzer (PALMA): A simple tool for the analysis of periodic cotyledon and leaf movement in Arabidopsis thaliana
L Wagner, C Schmal, D Staiger, S Danisman
Plant Methods 13 (1), 1-11, 2017
Conceptual models of entrainment, jet lag, and seasonality
IT Tokuda, C Schmal, B Ananthasubramaniam, H Herzel
Frontiers in Physiology 11, 334, 2020
Optimal time frequency analysis for biological data-pyBOAT
G Mönke, FA Sorgenfrei, C Schmal, AE Granada
bioRxiv, 2020
Nonlinear phenomena in models of the circadian clock
I van Soest, M Del Olmo, C Schmal, H Herzel
Journal of the Royal Society Interface 17 (170), 20200556, 2020
Principles underlying the complex dynamics of temperature entrainment by a circadian clock
P Burt, S Grabe, C Madeti, A Upadhyay, M Merrow, T Roenneberg, ...
Iscience 24 (11), 103370, 2021
CHRONO and DEC1/DEC2 compensate for lack of CRY1/CRY2 in expression of coherent circadian rhythm but not in generation of circadian oscillation in the neonatal mouse SCN
D Ono, K Honma, C Schmal, T Takumi, T Kawamoto, K Fujimoto, Y Kato, ...
Scientific reports 11 (1), 1-10, 2021
Analysis of complex circadian time series data using wavelets
C Schmal, G Mönke, AE Granada
arXiv preprint arXiv:2107.14066, 2021
An integrative omics approach reveals posttranscriptional mechanisms underlying circadian temperature compensation
C Schmal, B Maier, R Ashwal-Fluss, O Bartok, AM Finger, T Bange, ...
bioRxiv, 2021
Mechanisms Underlying the Complex Dynamics of Temperature Entrainment by a Circadian Clock
P Burt, S Grabe, C Madeti, A Upadhyay, M Merrow, T Roenneberg, ...
bioRxiv, 2021
The system can't perform the operation now. Try again later.
Articles 1–20