A neuroanatomically grounded Hebbian‐learning model of attention–language interactions in the human brain M Garagnani, T Wennekers, F Pulvermüller European Journal of Neuroscience 27 (2), 492-513, 2008 | 145 | 2008 |
Pattern formation in intracortical neuronal fields A Hutt, M Bestehorn, T Wennekers Network: Computation in Neural Systems 14 (2), 351-368, 2003 | 143 | 2003 |
Associative memory in networks of spiking neurons FT Sommer, T Wennekers Neural networks 14 (6-7), 825-834, 2001 | 93 | 2001 |
Language models based on Hebbian cell assemblies T Wennekers, M Garagnani, F Pulvermüller Journal of Physiology-Paris 100 (1-3), 16-30, 2006 | 92 | 2006 |
Thinking in circuits: toward neurobiological explanation in cognitive neuroscience F Pulvermüller, M Garagnani, T Wennekers Biological cybernetics 108 (5), 573-593, 2014 | 76 | 2014 |
Hippocampus, microcircuits and associative memory V Cutsuridis, T Wennekers Neural Networks 22 (8), 1120-1128, 2009 | 72 | 2009 |
Brain connections of words, perceptions and actions: A neurobiological model of spatio-temporal semantic activation in the human cortex R Tomasello, M Garagnani, T Wennekers, F Pulvermüller Neuropsychologia 98, 111-129, 2017 | 63 | 2017 |
A neurocomputational model of stimulus-specific adaptation to oddball and Markov sequences R Mill, M Coath, T Wennekers, SL Denham PLoS Comput Biol 7 (8), e1002117, 2011 | 62 | 2011 |
Cell assemblies, associative memory and temporal structure in brain signals T Wennekers, G Palm Time and the Brain 2, 2000 | 58 | 2000 |
Recruitment and consolidation of cell assemblies for words by way of Hebbian learning and competition in a multi-layer neural network M Garagnani, T Wennekers, F Pulvermüller Cognitive Computation 1 (2), 160-176, 2009 | 54 | 2009 |
A neuronal model of the language cortex M Garagnani, T Wennekers, F Pulvermüller Neurocomputing 70 (10-12), 1914-1919, 2007 | 49 | 2007 |
Dynamical properties of strongly interacting Markov chains N Ay, T Wennekers Neural Networks 16 (10), 1483-1497, 2003 | 48 | 2003 |
From structure to activity: Using centrality measures to predict neuronal activity JMK Fletcher, T Wennekers International journal of neural systems 28 (02), 1750013, 2018 | 45 | 2018 |
Emotions in autonomous agents: comparative analysis of mechanisms and functions T Rumbell, J Barnden, S Denham, T Wennekers Autonomous Agents and Multi-Agent Systems 25 (1), 1-45, 2012 | 45 | 2012 |
Syntactic sequencing in Hebbian cell assemblies T Wennekers, G Palm Cognitive Neurodynamics 3 (4), 429-441, 2009 | 40 | 2009 |
Controlling the speed of synfire chains T Wennekers, G Palm International Conference on Artificial Neural Networks, 451-456, 1996 | 40 | 1996 |
A neural network model of the cortico-hippocampal interplay and the representation of contexts A Bibbig, T Wennekers, G Palm Behavioural brain research 66 (1-2), 169-175, 1995 | 40 | 1995 |
A spiking self-organizing map combining stdp, oscillations, and continuous learning T Rumbell, SL Denham, T Wennekers IEEE transactions on neural networks and learning systems 25 (5), 894-907, 2013 | 38 | 2013 |
Top-down feedback in an HMAX-like cortical model of object perception based on hierarchical Bayesian networks and belief propagation S Dura-Bernal, T Wennekers, SL Denham PloS one 7 (11), e48216, 2012 | 35 | 2012 |
Finite state automata resulting from temporal information maximization and a temporal learning rule T Wennekers, N Ay Neural computation 17 (10), 2258-2290, 2005 | 34 | 2005 |