A new test for chaos in deterministic systems GA Gottwald, I Melbourne Proceedings of the Royal Society of London. Series A: Mathematical, Physical …, 2004 | 722 | 2004 |
On the implementation of the 0–1 test for chaos GA Gottwald, I Melbourne SIAM Journal on Applied Dynamical Systems 8 (1), 129-145, 2009 | 500 | 2009 |
Testing for chaos in deterministic systems with noise GA Gottwald, I Melbourne Physica D: Nonlinear Phenomena 212 (1-2), 100-110, 2005 | 382 | 2005 |
Asymptotic stability of heteroclinic cycles in systems with symmetry M Krupa, I Melbourne Ergodic Theory and Dynamical Systems 15 (1), 121-147, 1995 | 262 | 1995 |
Almost sure invariance principle for nonuniformly hyperbolic systems I Melbourne, M Nicol Communications in mathematical physics 260, 131-146, 2005 | 197 | 2005 |
On the validity of the 0–1 test for chaos GA Gottwald, I Melbourne Nonlinearity 22 (6), 1367, 2009 | 185 | 2009 |
Large deviations for nonuniformly hyperbolic systems I Melbourne, M Nicol Transactions of the American Mathematical Society 360 (12), 6661-6676, 2008 | 178 | 2008 |
The 0-1 test for chaos: A review GA Gottwald, I Melbourne Chaos detection and predictability, 221-247, 2016 | 172 | 2016 |
Heteroclinic cycles involving periodic solutions in mode interactions with O (2) symmetry I Melbourne, P Chossat, M Golubitsky Proceedings of the Royal Society of Edinburgh Section A: Mathematics 113 (3 …, 1989 | 152 | 1989 |
Application of the 0-1 test for chaos to experimental data I Falconer, GA Gottwald, I Melbourne, K Wormnes SIAM Journal on Applied Dynamical Systems 6 (2), 395-402, 2007 | 147 | 2007 |
Steady-state bifurcation with 0 (3)-symmetry P Chossat, R Lauterbach, I Melbourne Archive for Rational Mechanics and Analysis 113 (4), 313-376, 1991 | 143 | 1991 |
Asymptotic stability of heteroclinic cycles in systems with symmetry. II M Krupa, I Melbourne Proceedings of the Royal Society of Edinburgh Section A: Mathematics 134 (6 …, 2004 | 134 | 2004 |
The Lorenz attractor is mixing S Luzzatto, I Melbourne, F Paccaut Communications in Mathematical Physics 260, 393-401, 2005 | 133 | 2005 |
An example of a nonasymptotically stable attractor I Melbourne Nonlinearity 4 (3), 835, 1991 | 119 | 1991 |
A vector-valued almost sure invariance principle for hyperbolic dynamical systems I Melbourne, M Nicol | 116 | 2009 |
Smooth approximation of stochastic differential equations D Kelly, I Melbourne | 114 | 2016 |
Statistical limit theorems for suspension flows I Melbourne, A Török Israel Journal of Mathematics 144, 191-209, 2004 | 110 | 2004 |
Large and moderate deviations for slowly mixing dynamical systems I Melbourne Proceedings of the American Mathematical Society 137 (5), 1735-1741, 2009 | 103 | 2009 |
The structure of symmetric attractors I Melbourne, M Dellnitz, M Golubitsky Archive for rational mechanics and analysis 123, 75-98, 1993 | 96 | 1993 |
Meandering of the spiral tip: an alternative approach M Golubitsky, VG LeBlanc, I Melbourne Journal of nonlinear science 7, 557-586, 1997 | 95 | 1997 |