Karel Tůma
Karel Tůma
Charles University, Faculty of Mathematics and Physics, Prague
Verified email at karlin.mff.cuni.cz
TitleCited byYear
Size effects in martensitic microstructures: Finite-strain phase field model versus sharp-interface approach
K Tůma, S Stupkiewicz, H Petryk
Journal of the Mechanics and Physics of Solids 95, 284-307, 2016
242016
On a variant of the Maxwell and Oldroyd-B models within the context of a thermodynamic basis
J Málek, KR Rajagopal, K Tůma
International Journal of Non-Linear Mechanics 76, 42-47, 2015
232015
A thermodynamically compatible model for describing the response of asphalt binders
J Málek, KR Rajagopal, K Tůma
International Journal of Pavement Engineering 16 (4), 297-314, 2015
132015
Flow of a Burgers fluid due to time varying loads on deforming boundaries
J Hron, KR Rajagopal, K Tůma
Journal of Non-Newtonian Fluid Mechanics 210, 66-77, 2014
132014
On thermodynamics of incompressible viscoelastic rate type fluids with temperature dependent material coefficients
J Hron, V Miloš, V Průša, O Souček, K Tůma
International Journal of Non-Linear Mechanics 95, 193-208, 2017
122017
A thermodynamically compatible rate type fluid to describe the response of asphalt
J Hron, J Kratochvíl, J Málek, KR Rajagopal, K Tůma
Mathematics and Computers in Simulation 82 (10), 1853-1873, 2012
112012
Phase-field study of size-dependent morphology of austenite-twinned martensite interface in CuAlNi
K Tůma, S Stupkiewicz
International Journal of Solids and Structures 97, 89-100, 2016
102016
A thermodynamically compatible model for describing asphalt binders: solutions of problems
J Málek, KR Rajagopal, K Tůma
International Journal of Pavement Engineering 17 (6), 550-564, 2016
82016
On the response of nonlinear viscoelastic materials in creep and stress relaxation experiments in the lubricated squeeze flow setting
M Řehoř, V Průša, K Tůma
Physics of Fluids 28 (10), 103102, 2016
72016
Identification of rate type fluids suitable for modeling geomaterials
K Tůma
Univerzita Karlova, Matematicko-fyzikální fakulta, 2014
72014
Motion of the vitreous humour in a deforming eye–fluid-structure interaction between a nonlinear elastic solid and viscoleastic fluid
K Tůma, J Stein, V Průša, E Friedmann
Applied Mathematics and Computation 335, 50-64, 2018
5*2018
Rate-independent dissipation in phase-field modelling of displacive transformations
K Tůma, S Stupkiewicz, H Petryk
Journal of the Mechanics and Physics of Solids 114, 117-142, 2018
42018
Derivation of the variants of the Burgers model using a thermodynamic approach and appealing to the concept of evolving natural configurations
J Málek, K Rajagopal, K Tůma
Fluids 3 (4), 69, 2018
32018
Colombeau algebra as a mathematical tool for investigating step load and step deformation of systems of nonlinear springs and dashpots
V Průša, M Řehoř, K Tůma
Zeitschrift für angewandte Mathematik und Physik 68 (1), 24, 2017
32017
Viscoelastic fluid flows at moderate Weissenberg numbers using Oldroyd type model
L Pirkl, T Bodnár, K Tůma
AIP Conference Proceedings 1389 (1), 102-105, 2011
32011
Finite amplitude stability of internal steady flows of the Giesekus viscoelastic rate-type fluid
M Dostalík, V Průša, K Tůma
arXiv preprint arXiv:1808.03111, 2018
12018
Gradient-enhanced thermomechanical 3D model for simulation of transformation patterns in pseudoelastic shape memory alloys
M Rezaee-Hajidehi, K Tůma, S Stupkiewicz
International Journal of Plasticity, 2019
2019
Nonlinear stability of steady flow of Giesekus viscoelastic fluid
M Dostalík, V Průša, K Tůma
2018
On the analysis for a class of thermodynamically compatible viscoelastic fluids with stress diffusion
J Málek, M Bulíček, V Průša, E Süli, KR Rajagopal, K Tůma, T Skřivan
2017
Deformace vazkopružných materiálů: modelování a počítačová analýza vybraných modelů
K Tůma
Univerzita Karlova, Matematicko-fyzikální fakulta, 2008
2008
The system can't perform the operation now. Try again later.
Articles 1–20