Wisdom of crowds for robust gene network inference D Marbach, JC Costello, R Küffner, NM Vega, RJ Prill, DM Camacho, ... Nature methods 9 (8), 796-804, 2012 | 1831 | 2012 |
Identification of Functional Elements and Regulatory Circuits by Drosophila modENCODE modENCODE Consortium, S Roy, J Ernst, PV Kharchenko, P Kheradpour, ... Science 330 (6012), 1787-1797, 2010 | 1088 | 2010 |
Revealing strengths and weaknesses of methods for gene network inference D Marbach, RJ Prill, T Schaffter, C Mattiussi, D Floreano, G Stolovitzky Proceedings of the national academy of sciences 107 (14), 6286-6291, 2010 | 885 | 2010 |
GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods T Schaffter, D Marbach, D Floreano Bioinformatics 27 (16), 2263-2270, 2011 | 655 | 2011 |
Generating realistic in silico gene networks for performance assessment of reverse engineering methods D Marbach, T Schaffter, C Mattiussi, D Floreano Journal of computational biology 16 (2), 229-239, 2009 | 540 | 2009 |
Towards a rigorous assessment of systems biology models: the DREAM3 challenges RJ Prill, D Marbach, J Saez-Rodriguez, PK Sorger, LG Alexopoulos, ... PloS one 5 (2), e9202, 2010 | 510 | 2010 |
Fast and rigorous computation of gene and pathway scores from SNP-based summary statistics D Lamparter, D Marbach, R Rueedi, Z Kutalik, S Bergmann PLoS computational biology 12 (1), e1004714, 2016 | 354 | 2016 |
Tissue-specific regulatory circuits reveal variable modular perturbations across complex diseases D Marbach, D Lamparter, G Quon, M Kellis, Z Kutalik, S Bergmann Nature methods 13 (4), 366-370, 2016 | 351 | 2016 |
Network deconvolution as a general method to distinguish direct dependencies in networks S Feizi, D Marbach, M Médard, M Kellis Nature biotechnology 31 (8), 726-733, 2013 | 329 | 2013 |
Assessment of network module identification across complex diseases S Choobdar, ME Ahsen, J Crawford, M Tomasoni, T Fang, D Lamparter, ... Nature methods 16 (9), 843-852, 2019 | 291 | 2019 |
Chromatin three-dimensional interactions mediate genetic effects on gene expression O Delaneau, M Zazhytska, C Borel, G Giannuzzi, G Rey, C Howald, ... Science 364 (6439), eaat8266, 2019 | 190 | 2019 |
Consortium D, Kellis M, Collins JJ, Stolovitzky G. Wisdom of crowds for robust gene network inference D Marbach, JC Costello, R Kuffner, NM Vega, RJ Prill, DM Camacho, ... Nat Methods 9 (8), 796-804, 2012 | 164 | 2012 |
Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks D Marbach, S Roy, F Ay, PE Meyer, R Candeias, T Kahveci, CA Bristow, ... Genome research 22 (7), 1334-1349, 2012 | 145 | 2012 |
Online optimization of modular robot locomotion D Marbach, AJ Ijspeert IEEE International Conference Mechatronics and Automation, 2005 1, 248-253, 2005 | 104 | 2005 |
Verification of systems biology research in the age of collaborative competition P Meyer, LG Alexopoulos, T Bonk, A Califano, CR Cho, A De La Fuente, ... Nature biotechnology 29 (9), 811-815, 2011 | 100 | 2011 |
Co-evolution of configuration and control for homogenous modular robots D Marbach, AJ Ijspeert Proceedings of the eighth conference on intelligent autonomous systems (IAS8 …, 2004 | 80 | 2004 |
Information-Theoretic Inference of Gene Networks Using Backward Elimination. P Meyer, D Marbach, S Roy, M Kellis BioComp, 700-705, 2010 | 65 | 2010 |
Replaying the evolutionary tape: biomimetic reverse engineering of gene networks D Marbach, C Mattiussi, D Floreano Annals of the New York Academy of Sciences 1158 (1), 234-245, 2009 | 49 | 2009 |
Combining multiple results of a reverse‐engineering algorithm: application to the DREAM five‐gene network challenge D Marbach, C Mattiussi, D Floreano Annals of the New York Academy of Sciences 1158 (1), 102-113, 2009 | 44 | 2009 |
Genome-wide association between transcription factor expression and chromatin accessibility reveals regulators of chromatin accessibility D Lamparter, D Marbach, R Rueedi, S Bergmann, Z Kutalik PLoS computational biology 13 (1), e1005311, 2017 | 30 | 2017 |