Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions. A Blanchet, J Dolbeault, B Perthame Electronic Journal of Differential Equations (EJDE)[electronic only] 2006 …, 2006 | 407 | 2006 |

Infinite time aggregation for the critical Patlak‐Keller‐Segel model in ℝ^{2}A Blanchet, JA Carrillo, N Masmoudi Communications on Pure and Applied Mathematics: A Journal Issued by the …, 2008 | 203 | 2008 |

Convergence of the mass-transport steepest descent scheme for the subcritical Patlak–Keller–Segel model A Blanchet, V Calvez, JA Carrillo SIAM Journal on Numerical Analysis 46 (2), 691-721, 2008 | 189 | 2008 |

Critical mass for a Patlak–Keller–Segel model with degenerate diffusion in higher dimensions A Blanchet, JA Carrillo, P Laurençot Calculus of Variations and Partial Differential Equations 35 (2), 133-168, 2009 | 151 | 2009 |

Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model A Blanchet, E Carlen, JA Carrillo arXiv preprint arXiv:1009.0134, 2010 | 130 | 2010 |

Asymptotics of the fast diffusion equation via entropy estimates A Blanchet, M Bonforte, J Dolbeault, G Grillo, JL Vázquez Archive for Rational Mechanics and Analysis 191 (2), 347-385, 2009 | 108 | 2009 |

Hardy–Poincaré inequalities and applications to nonlinear diffusions A Blanchet, M Bonforte, J Dolbeault, G Grillo, JL Vázquez Comptes Rendus Mathématique 344 (7), 431-436, 2007 | 58 | 2007 |

Optimal transport and Cournot-Nash equilibria A Blanchet, G Carlier Mathematics of Operations Research 41 (1), 125-145, 2015 | 43 | 2015 |

On the continuity of the time derivative of the solution to the parabolic obstacle problem with variable coefficients A Blanchet, J Dolbeault, R Monneau Journal de mathématiques pures et appliquées 85 (3), 371-414, 2006 | 42 | 2006 |

The parabolic-parabolic Keller-Segel system with critical diffusion as a gradient flow in ℝ d, d≥ 3 A Blanchet, P Laurençot Communications in Partial Differential Equations 38 (4), 658-686, 2013 | 41 | 2013 |

Segel model: optimal critical mass and qualitative properties of the solutions A Blanchet, J Dolbeault, B Perthame, T Keller Electron. J. Differential Equations 44 (2006), 1-33, 2006 | 38 | 2006 |

Asymptotic behaviour for small mass in the two-dimensional parabolic–elliptic Keller–Segel model A Blanchet, J Dolbeault, M Escobedo, J Fernández Journal of Mathematical Analysis and Applications 361 (2), 533-542, 2010 | 37 | 2010 |

From Nash to Cournot–Nash equilibria via the Monge–Kantorovich problem A Blanchet, G Carlier Philosophical Transactions of the Royal Society A: Mathematical, Physical …, 2014 | 34 | 2014 |

A hybrid variational principle for the Keller–Segel system in ℝ2 A Blanchet, JA Carrillo, D Kinderlehrer, M Kowalczyk, P Laurençot, ... ESAIM: Mathematical Modelling and Numerical Analysis 49 (6), 1553-1576, 2015 | 32 | 2015 |

A hybrid variational principle for the Keller–Segel system in ℝ2 A Blanchet, JA Carrillo, D Kinderlehrer, M Kowalczyk, P Laurençot, ... ESAIM: Mathematical Modelling and Numerical Analysis 49 (6), 1553-1576, 2015 | 32 | 2015 |

On the regularity of the free boundary in the parabolic obstacle problem. Application to American options A Blanchet Nonlinear Analysis: Theory, Methods & Applications 65 (7), 1362-1378, 2006 | 28 | 2006 |

On the parabolic-elliptic Patlak-Keller-Segel system in dimension 2 and higher A Blanchet Séminaire Laurent Schwartz—EDP et applications, 1-26, 2011 | 26 | 2011 |

Improved intermediate asymptotics for the heat equation JP Bartier, A Blanchet, J Dolbeault, M Escobedo Applied Mathematics Letters 24 (1), 76-81, 2011 | 24 | 2011 |

How social information can improve estimation accuracy in human groups B Jayles, H Kim, R Escobedo, S Cezera, A Blanchet, T Kameda, C Sire, ... Proceedings of the National Academy of Sciences 114 (47), 12620-12625, 2017 | 23 | 2017 |

Existence and uniqueness of equilibrium for a spatial model of social interactions A Blanchet, P Mossay, F Santambrogio International Economic Review 57 (1), 31-60, 2016 | 22 | 2016 |