Schubert polynomials, slide polynomials, Stanley symmetric functions and quasi-Yamanouchi pipe dreams S Assaf, D Searles Advances in Mathematics 306, 89-122, 2017 | 64 | 2017 |

Kohnert tableaux and a lifting of quasi-Schur functions S Assaf, D Searles Journal of Combinatorial Theory, Series A 156, 85-118, 2018 | 45 | 2018 |

Kohnert polynomials S Assaf, D Searles Experimental Mathematics 31 (1), 93-119, 2022 | 39 | 2022 |

Indecomposable 0-Hecke modules for extended Schur functions D Searles Proceedings of the American Mathematical Society 148 (5), 1933-1943, 2020 | 27 | 2020 |

Polynomial bases: positivity and Schur multiplication D Searles Transactions of the American Mathematical Society 373 (2), 819-847, 2020 | 21 | 2020 |

0-Hecke modules for Young row-strict quasisymmetric Schur functions J Bardwell, D Searles European Journal of Combinatorics 102, 103494, 2022 | 19 | 2022 |

Decompositions of Grothendieck polynomials O Pechenik, D Searles International Mathematics Research Notices 2019 (10), 3214-3241, 2019 | 18 | 2019 |

Polynomials from Combinatorial-theory C Monical, O Pechenik, D Searles Canadian Journal of Mathematics 73 (1), 29-62, 2021 | 16 | 2021 |

Diagram supermodules for -Hecke-Clifford algebras D Searles arXiv preprint arXiv:2202.12022, 2022 | 7 | 2022 |

Asymmetric function theory O Pechenik, D Searles Schubert Calculus and Its Applications in Combinatorics and Representation …, 2020 | 6 | 2020 |

Lifting the dual immaculate functions S Mason, D Searles Journal of Combinatorial Theory, Series A 184, 105511, 2021 | 5 | 2021 |

0-Hecke Modules, Quasiysmmetric Functions, and Peak Functions in Type B C Defant, D Searles Sém. Lothar. Combin B 89, 53, 2023 | 3 | 2023 |

Weak Bruhat interval modules of finite-type -Hecke algebras and projective covers J Bardwell, D Searles arXiv preprint arXiv:2311.10068, 2023 | 2 | 2023 |

Root-theoretic Young diagrams and Schubert calculus: planarity and the adjoint varieties D Searles, A Yong Journal of Algebra 448, 238-293, 2016 | 2 | 2016 |

On the number of facets of polytopes representing comparative probability orders I Chevyrev, D Searles, A Slinko Order 30, 749-761, 2013 | 2 | 2013 |

Comparative Probability Orders and the Flip Relation M Conder, D Searles, A Slinko ISIPTA'07, 2007 | 2 | 2007 |

0-Hecke Modules, Domino Tableaux, and Type- Quasisymmetric Functions C Defant, D Searles arXiv preprint arXiv:2404.04961, 2024 | 1 | 2024 |

Bruhat Interval Polytopes, 1-Skeleton Lattices, and Smooth Torus Orbit Closures; The Distribution of Descents on Nonnesting Permutations; Pop, Crackle, Snap; Studying … C Gaetz, S Elizalde, C Defant, N Williams, NJ Williams, W Fang, ... Séminaire lotharingien de combinatoire, 2023 | 1 | 2023 |

The" Young" and" reverse" dichotomy of polynomials S Mason, D Searles arXiv preprint arXiv:2105.03895, 2021 | 1 | 2021 |

K-theoretic polynomials C Monical, O Pechenik, D Searles Séminaire lotharingien de combinatoire 82, 2020 | 1 | 2020 |