Discrete Wasserstein barycenters: Optimal transport for discrete data E Anderes, S Borgwardt, J Miller Mathematical Methods of Operations Research 84 (2), 389-409, 2016 | 87 | 2016 |
Geometric clustering for the consolidation of farmland and woodland S Borgwardt, A Brieden, P Gritzmann The Mathematical Intelligencer, 37-44, 2014 | 42 | 2014 |
An LP-based k-means algorithm for balancing weighted point sets S Borgwardt, A Brieden, P Gritzmann European Journal of Operational Research 263 (2), 349-355, 2017 | 29 | 2017 |
Constrained minimum-k-star clustering and its application to the consolidation of farmland S Borgwardt, A Brieden, P Gritzmann Operational Research 11 (1), 1-17, 2011 | 28 | 2011 |
The diameters of network-flow polytopes satisfy the Hirsch conjecture S Borgwardt, JA De Loera, E Finhold Mathematical Programming 171 (1), 283-309, 2018 | 24 | 2018 |
On the diameter of partition polytopes and vertex-disjoint cycle cover S Borgwardt Mathematical Programming 141 (1), 1-20, 2013 | 24 | 2013 |
On the circuit diameter of dual transportation polyhedra S Borgwardt, E Finhold, R Hemmecke SIAM Journal on Discrete Mathematics 29 (1), 113-121, 2015 | 23 | 2015 |
On the computational complexity of finding a sparse Wasserstein barycenter S Borgwardt, S Patterson Journal of Combinatorial Optimization 41 (3), 736-761, 2021 | 17 | 2021 |
Improved linear programs for discrete barycenters S Borgwardt, S Patterson Informs Journal on Optimization 2 (1), 14-33, 2020 | 14 | 2020 |
Edges versus circuits: a hierarchy of diameters in polyhedra S Borgwardt, JA De Loera, E Finhold Advances in Geometry 16 (4), 511-530, 2016 | 14 | 2016 |
On soft power diagrams S Borgwardt Journal of Mathematical Modelling and Algorithms in Operations Research 14 …, 2015 | 13 | 2015 |
A combinatorial optimization approach to constrained clustering SA Borgwardt Technische Universität München, 2010 | 13 | 2010 |
The hierarchy of circuit diameters and transportation polytopes S Borgwardt, JA De Loera, E Finhold, J Miller Discrete Applied Mathematics 240, 8-24, 2018 | 9 | 2018 |
A balanced k-means algorithm for weighted point sets S Borgwardt, A Brieden, P Gritzmann arXiv preprint arXiv:1308.4004, 2013 | 9 | 2013 |
An implementation of steepest-descent augmentation for linear programs S Borgwardt, C Viss Operations Research Letters 48 (3), 323-328, 2020 | 8 | 2020 |
On the circuit diameter conjecture S Borgwardt, T Stephen, T Yusun Discrete & Computational Geometry 60 (3), 558-587, 2018 | 8 | 2018 |
Threshold-based preprocessing for approximating the weighted dense k-subgraph problem S Borgwardt, F Schmiedl European Journal of Operational Research 234 (3), 631-640, 2014 | 8 | 2014 |
An LP-based, strongly-polynomial 2-approximation algorithm for sparse Wasserstein barycenters S Borgwardt Operational Research, 1-41, 2020 | 7 | 2020 |
Good clusterings have large volume S Borgwardt, F Happach Operations Research 67 (1), 215-231, 2019 | 7 | 2019 |
Mathematics in agriculture and forestry: Geometric clustering for land consolidation S Borgwardt, A Brieden, P Gritzmann IFORS News, 2013 | 7 | 2013 |