Well-posedness of Lagrangian flows and continuity equations in metric measure spaces L Ambrosio, D Trevisan Analysis & PDE 7 (5), 1179-1234, 2014 | 52 | 2014 |

A PDE approach to a 2-dimensional matching problem L Ambrosio, F Stra, D Trevisan Probability Theory and Related Fields 173 (1-2), 433-477, 2019 | 32* | 2019 |

Passive states optimize the output of bosonic Gaussian quantum channels G De Palma, D Trevisan, V Giovannetti IEEE Transactions on Information Theory 62 (5), 2895-2906, 2016 | 28 | 2016 |

Well-posedness of multidimensional diffusion processes with weakly differentiable coefficients D Trevisan Electronic Journal of Probability 21, 2016 | 26 | 2016 |

Gaussian states minimize the output entropy of the one-mode quantum attenuator G De Palma, D Trevisan, V Giovannetti IEEE Transactions on Information Theory 63 (1), 728-737, 2016 | 24 | 2016 |

Gaussian states minimize the output entropy of one-mode quantum Gaussian channels G De Palma, D Trevisan, V Giovannetti Physical review letters 118 (16), 160503, 2017 | 20 | 2017 |

Weak and strong convergence of derivations and stability of flows with respect to MGH convergence L Ambrosio, F Stra, D Trevisan Journal of Functional Analysis 272 (3), 1182-1229, 2017 | 18 | 2017 |

The conditional entropy power inequality for bosonic quantum systems G De Palma, D Trevisan Communications in Mathematical Physics 360 (2), 639-662, 2018 | 11 | 2018 |

One-mode quantum-limited Gaussian channels have Gaussian maximizers G De Palma123, D Trevisan, V Giovannetti arXiv preprint arXiv:1610.09967, 2016 | 11* | 2016 |

Lecture notes on the DiPerna-Lions theory in abstract measure spaces L Ambrosio, D Trevisan arXiv preprint arXiv:1505.05292, 2015 | 11 | 2015 |

Three superposition principles: currents, continuity equations and curves of measures E Stepanov, D Trevisan Journal of Functional Analysis 272 (3), 1044-1103, 2017 | 10 | 2017 |

Zero noise limits using local times D Trevisan Electronic Communications in Probability 18, 2013 | 10 | 2013 |

Lagrangian flows driven by $$$$ fields in Wiener spaces D Trevisan Probability Theory and Related Fields 163 (1-2), 123-147, 2015 | 9 | 2015 |

Multimode Gaussian optimizers for the Wehrl entropy and quantum Gaussian channels G De Palma, D Trevisan, V Giovannetti arXiv preprint arXiv:1705.00499, 2017 | 8 | 2017 |

Gaussian optimizers for entropic inequalities in quantum information G De Palma, D Trevisan, V Giovannetti, L Ambrosio Journal of Mathematical Physics 59 (8), 081101, 2018 | 6 | 2018 |

Well-posedness of diffusion processes in metric measure spaces D Trevisan PhD thesis, 2014 | 6 | 2014 |

Lusin-type approximation of Sobolev by Lipschitz functions, in Gaussian and RCD (K,∞) spaces L Ambrosio, E Bruč, D Trevisan Advances in Mathematics 339, 426-452, 2018 | 5 | 2018 |

Functions of bounded variation on the classical Wiener space and an extended Ocone–Karatzas formula M Pratelli, D Trevisan Stochastic Processes and their Applications 122 (6), 2383-2399, 2012 | 5 | 2012 |

A Benamou–Brenier formulation of martingale optimal transport M Huesmann, D Trevisan Bernoulli 25 (4A), 2729-2757, 2019 | 4 | 2019 |

The entropy power inequality with quantum memory G De Palma, D Trevisan ArXiv e-prints, 2017 | 3 | 2017 |