Andrew T. T. McRae
Andrew T. T. McRae
Unknown affiliation
No verified email
Cited by
Cited by
Firedrake: automating the finite element method by composing abstractions
F Rathgeber, DA Ham, L Mitchell, M Lange, F Luporini, ATT McRae, ...
ACM Transactions on Mathematical Software (TOMS) 43 (3), 24, 2016
Automated generation and symbolic manipulation of tensor product finite elements
ATT McRae, GT Bercea, L Mitchell, DA Ham, CJ Cotter
SIAM Journal on Scientific Computing 38 (5), S25-S47, 2016
Automating the solution of PDEs on the sphere and other manifolds in FEniCS 1.2
ME Rognes, DA Ham, CJ Cotter, ATT McRae
Geoscientific Model Development 6 (6), 2099-2119, 2013
Energy‐ and enstrophy‐conserving schemes for the shallow-water equations, based on mimetic finite elements
ATT McRae, CJ Cotter
Quarterly Journal of the Royal Meteorological Society 140 (684), 2223-2234, 2014
A generative deep learning approach to stochastic downscaling of precipitation forecasts
L Harris, ATT McRae, M Chantry, PD Dueben, TN Palmer
Journal of Advances in Modeling Earth Systems 14 (10), e2022MS003120, 2022
A structure-exploiting numbering algorithm for finite elements on extruded meshes, and its performance evaluation in Firedrake
GT Bercea, ATT McRae, DA Ham, L Mitchell, F Rathgeber, L Nardi, ...
Geoscientific Model Development 9 (10), 3803-3815, 2016
Optimal-Transport--Based Mesh Adaptivity on the Plane and Sphere Using Finite Elements
ATT McRae, CJ Cotter, CJ Budd
SIAM Journal on Scientific Computing 40 (2), A1121-A1148, 2018
The scaling and skewness of optimally transported meshes on the sphere
CJ Budd, ATT McRae, CJ Cotter
Journal of Computational Physics 375, 540-564, 2018
Firedrake user manual
DA Ham, PHJ Kelly, L Mitchell, CJ Cotter, RC Kirby, K Sagiyama, ...
Imperial College London and University of Oxford and Baylor University and …, 2023
Compatible Finite Element Methods for Geophysical Flows: Automation and Implementation Using Firedrake
TH Gibson, ATT McRae, CJ Cotter, L Mitchell, DA Ham
Springer Nature, 2019
Compatible finite element methods for numerical weather prediction
CJ Cotter, ATT McRae
arXiv preprint arXiv:1401.0616, 2014
Deep Learning for Downscaling Tropical Cyclone Rainfall to Hazard‐relevant Spatial Scales
E Vosper, P Watson, L Harris, A McRae, R Santos‐Rodriguez, L Aitchison, ...
Journal of Geophysical Research: Atmospheres, e2022JD038163, 2023
Single-Precision in the Tangent-Linear and Adjoint Models of Incremental 4D-Var
S Hatfield, A McRae, T Palmer, P Düben
Monthly Weather Review 148 (4), 1541-1552, 2020
Compatible finite element methods for atmospheric dynamical cores
Imperial College London, 2015
TH Gibson, ATT McRae, CJ Cotter, L Mitchell, DA Ham
Compatible Finite Element Methods for Geophysical Flows, 39-54, 2019
Deep learning for downscaling tropical cyclone rainfall
E Vosper, P Watson, L Harris, A McRae, R Santos-Rodriguez, L Aitchison, ...
EGU23, 2023
Firedrake: Re-imagining FEniCS by Composing Domain-specific Abstractions
F Rathgeber, L Mitchell, D Ham, M Lange, A McRae, F Luporini, G Bercea, ...
Further analysis of cGAN: A system for Generative Deep Learning Post-processing of Precipitation
FC Cooper, ATT McRae, M Chantry, B Antonio, TN Palmer
arXiv preprint arXiv:2309.15689, 2023
Improving post-processing of East African precipitation forecasts using a generative machine learning model
B Antonio, A McRae, D MacLeod, F Cooper, J Marsham, L Aitchison, ...
EGU23, 2023
Using reduced-precision arithmetic in the adjoint model of MITgcm
ATT McRae, TN Palmer
arXiv preprint arXiv:2003.08972, 2020
The system can't perform the operation now. Try again later.
Articles 1–20