Discrete mollification and automatic numerical differentiation DA Murio, CE Mejía, S Zhan Computers & Mathematics with Applications 35 (5), 1-16, 1998 | 103 | 1998 |
Stabilization of explicit methods for convection diffusion equations by discrete mollification CD Acosta, CE Mejía Computers & Mathematics with Applications 55 (3), 368-380, 2008 | 53 | 2008 |
Numerical solution of generalized IHCP by discrete mollification CE Mejía, DA Murio Computers & Mathematics with Applications 32 (2), 33-50, 1996 | 48 | 1996 |
Environmental applications of camera images calibrated by means of the Levenberg–Marquardt method JCP Muńoz, CAO Alarcón, AF Osorio, CE Mejía, R Medina Computers & geosciences 51, 74-82, 2013 | 43 | 2013 |
Mollified hyperbolic method for coefficient identification problems CE Mejía, DA Murio Computers & Mathematics with Applications 26 (5), 1-12, 1993 | 43 | 1993 |
Source terms identification for time fractional diffusion equation DA Murio, CE Mejía Revista Colombiana de Matemáticas 42 (1), 25-46, 2008 | 40 | 2008 |
New stable numerical inversion of Abel's integral equation DA Murio, D Hinestroza, CE Mejía Computers & Mathematics with Applications 23 (11), 3-11, 1992 | 33 | 1992 |
Generalized time fractional IHCP with Caputo fractional derivatives DA Murio, CE Mejia Journal of Physics: Conference Series 135 (1), 012074, 2008 | 27 | 2008 |
Monotone difference schemes stabilized by discrete mollification for strongly degenerate parabolic equations CD Acosta, R Bürger, CE Mejía Numerical Methods for Partial Differential Equations 28 (1), 38-62, 2012 | 25 | 2012 |
Numerical identification of diffusivity coefficient and initial condition by discrete mollification CE Mejía, DA Murio Computers & Mathematics with Applications 30 (12), 35-50, 1995 | 24 | 1995 |
Determination of the geophysical model function of NSCAT and its corresponding variance by the use of neural networks C Mejia, F Badran, A Bentamy, M Crepon, S Thiria, N Tran Journal of Geophysical Research: Oceans 104 (C5), 11539-11556, 1999 | 23 | 1999 |
Numerical identification of a nonlinear diffusion coefficient by discrete mollification CE Mejía, CD Acosta, KI Saleme Computers & Mathematics with Applications 62 (5), 2187-2199, 2011 | 22 | 2011 |
Approximate solution of hyperbolic conservation laws by discrete mollification CD Acosta, CE Mejía Applied numerical mathematics 59 (9), 2256-2265, 2009 | 21 | 2009 |
A mollification based operator splitting method for convection diffusion equations CD Acosta, CE Mejía Computers & mathematics with applications 59 (4), 1397-1408, 2010 | 16 | 2010 |
Some applications of the mollification method CE Mejía, DA Murio, S Zhan Approximation, Optimization and Mathematical Economics, 213-222, 2001 | 15 | 2001 |
A two dimensional discrete mollification operator and the numerical solution of an inverse source problem M Echeverry, C Mejía Axioms 7 (4), 89, 2018 | 13 | 2018 |
Solution of a time fractional inverse advection-dispersion problem by discrete mollification C Mejía, H Piedrahita Revista Colombiana de Matemáticas 51 (1), 83-102, 2017 | 11 | 2017 |
Efficient parameter estimation in a macroscopic traffic flow model by discrete mollification CD Acosta, R Bürger, CE Mejía Transportmetrica A: Transport Science 11 (8), 702-715, 2015 | 11 | 2015 |
A numerical method for a time-fractional advection–dispersion equation with a nonlinear source term CE Mejía, A Piedrahita Journal of Applied Mathematics and Computing, 1-17, 2019 | 9 | 2019 |
A stability and sensitivity analysis of parametric functions in a sedimentation model CD Acosta, R Bürger, CE Mejia Dyna 81 (183), 22-30, 2014 | 8 | 2014 |