Bayesian probabilistic numerical methods J Cockayne, CJ Oates, TJ Sullivan, M Girolami SIAM review 61 (4), 756-789, 2019 | 156 | 2019 |
Convergence rates for a class of estimators based on Stein’s method CJ Oates, J Cockayne, FX Briol, M Girolami | 63 | 2019 |
Optimal thinning of MCMC output M Riabiz, WY Chen, J Cockayne, P Swietach, SA Niederer, L Mackey, ... Journal of the Royal Statistical Society Series B: Statistical Methodology …, 2022 | 44 | 2022 |
A Bayesian conjugate gradient method (with discussion) J Cockayne, CJ Oates, ICF Ipsen, M Girolami | 42* | 2019 |
Probabilistic numerical methods for PDE-constrained Bayesian inverse problems J Cockayne, C Oates, T Sullivan, M Girolami AIP Conference Proceedings 1853 (1), 2017 | 42 | 2017 |
Probabilistic meshless methods for partial differential equations and Bayesian inverse problems J Cockayne, C Oates, TJ Sullivan, M Girolami | 31 | 2016 |
Probabilistic linear solvers: a unifying view S Bartels, J Cockayne, ICF Ipsen, P Hennig Statistics and Computing 29, 1249-1263, 2019 | 29 | 2019 |
Bayesian probabilistic numerical methods in time-dependent state estimation for industrial hydrocyclone equipment CJ Oates, J Cockayne, RG Aykroyd, M Girolami Journal of the American Statistical Association 114 (528), 1518-1531, 2019 | 25 | 2019 |
Probabilistic numerical methods for partial differential equations and Bayesian inverse problems J Cockayne, C Oates, T Sullivan, M Girolami arXiv preprint arXiv:1605.07811, 2016 | 23 | 2016 |
On the sampling problem for kernel quadrature FX Briol, CJ Oates, J Cockayne, WY Chen, M Girolami International Conference on Machine Learning, 586-595, 2017 | 21 | 2017 |
Bayesian numerical methods for nonlinear partial differential equations J Wang, J Cockayne, O Chkrebtii, TJ Sullivan, CJ Oates Statistics and Computing 31, 1-20, 2021 | 14 | 2021 |
Testing whether a learning procedure is calibrated J Cockayne, MM Graham, CJ Oates, TJ Sullivan, O Teymur The Journal of Machine Learning Research 23 (1), 9213-9248, 2022 | 9 | 2022 |
On the Bayesian solution of differential equations J Wang, J Cockayne, C Oates arXiv preprint arXiv:1805.07109, 2018 | 9 | 2018 |
Bayesian probabilistic numerical methods for industrial process monitoring CJ Oates, J Cockayne, RG Aykroyd arXiv preprint arXiv:1707.06107 1707, 2017 | 9 | 2017 |
Bayesian probabilistic numerical methods (2017) J Cockayne, C Oates, T Sullivan, M Girolami arXiv preprint arXiv:1702.03673, 0 | 8 | |
Probabilistic iterative methods for linear systems J Cockayne, ICF Ipsen, CJ Oates, TW Reid The Journal of Machine Learning Research 22 (1), 10505-10538, 2021 | 7 | 2021 |
A role for symmetry in the Bayesian solution of differential equations J Wang, J Cockayne, CJ Oates | 7 | 2020 |
Probabilistic gradients for fast calibration of differential equation models J Cockayne, A Duncan SIAM/ASA Journal on Uncertainty Quantification 9 (4), 1643-1672, 2021 | 5 | 2021 |
A probabilistic numerical extension of the conjugate gradient method TW Reid, IC Ipsen, J Cockayne, CJ Oates arXiv preprint arXiv:2008.03225, 2020 | 5 | 2020 |
Probabilistic meshless methods for Bayesian inverse problems J Cockayne, CJ Oates, T Sullivan, M Girolami arXiv preprint arXiv:1605.07811, 2016 | 5 | 2016 |