Follow
Kaiqi Zhang
Title
Cited by
Cited by
Year
A systematic dnn weight pruning framework using alternating direction method of multipliers
T Zhang, S Ye, K Zhang, J Tang, W Wen, M Fardad, Y Wang
Proceedings of the European conference on computer vision (ECCV), 184-199, 2018
5352018
Adam-admm: A unified, systematic framework of structured weight pruning for dnns
T Zhang, K Zhang, S Ye, J Li, J Tang, W Wen, X Lin, M Fardad, Y Wang
arXiv preprint arXiv:1807.11091 2 (3), 2018
772018
A unified framework of DNN weight pruning and weight clustering/quantization using ADMM
S Ye, T Zhang, K Zhang, J Li, J Xie, Y Liang, S Liu, X Lin, Y Wang
arXiv preprint arXiv:1811.01907, 2018
672018
Progressive weight pruning of deep neural networks using ADMM
S Ye, T Zhang, K Zhang, J Li, K Xu, Y Yang, F Yu, J Tang, M Fardad, S Liu, ...
arXiv preprint arXiv:1810.07378, 2018
532018
Structadmm: Achieving ultrahigh efficiency in structured pruning for dnns
T Zhang, S Ye, X Feng, X Ma, K Zhang, Z Li, J Tang, S Liu, X Lin, Y Liu, ...
IEEE transactions on neural networks and learning systems 33 (5), 2259-2273, 2021
412021
StructADMM: A systematic, high-efficiency framework of structured weight pruning for DNNs
T Zhang, S Ye, K Zhang, X Ma, N Liu, L Zhang, J Tang, K Ma, X Lin, ...
arXiv preprint arXiv:1807.11091, 2018
352018
The system can't perform the operation now. Try again later.
Articles 1–6