Conserved quantities of some Hamiltonian wave equations after full discretization B Cano Numerische Mathematik 103, 197-223, 2006 | 95 | 2006 |

Error growth in the numerical integration of periodic orbits, with application to Hamiltonian and reversible systems B Cano, JM Sanz-Serna SIAM journal on numerical analysis 34 (4), 1391-1417, 1997 | 75 | 1997 |

Spectral-fractional step Runge–Kutta discretizations for initial boundary value problems with time dependent boundary conditions I Alonso-Mallo, B Cano, J Jorge Mathematics of Computation 73 (248), 1801-1825, 2004 | 42 | 2004 |

Error growth in the numerical integration of periodic orbits by multistep methods, with application to reversible systems B Cano, JM Sanz-Serna IMA journal of numerical analysis 18 (1), 57-75, 1998 | 38 | 1998 |

Spectral/Rosenbrock discretizations without order reduction for linear parabolic problems I Alonso-Mallo, B Cano Applied numerical mathematics 41 (2), 247-268, 2002 | 31 | 2002 |

Multistep cosine methods for second-order partial differential systems B Cano, MJ Moreta IMA journal of numerical analysis 30 (2), 431-461, 2010 | 30 | 2010 |

Avoiding order reduction of Runge–Kutta discretizations for linear time-dependent parabolic problems I Alonso-Mallo, B Cano BIT Numerical Mathematics 44, 1-20, 2004 | 29 | 2004 |

Exponential time integration of solitary waves of cubic Schrödinger equation B Cano, A González-Pachón Applied Numerical Mathematics 91, 26-45, 2015 | 28 | 2015 |

Stability of Runge–Kutta–Nyström methods I Alonso-Mallo, B Cano, MJ Moreta Journal of computational and applied mathematics 189 (1-2), 120-131, 2006 | 27 | 2006 |

Avoiding order reduction when integrating reaction–diffusion boundary value problems with exponential splitting methods I Alonso-Mallo, B Cano, N Reguera Journal of Computational and Applied Mathematics 357, 228-250, 2019 | 26 | 2019 |

Avoiding order reduction when integrating linear initial boundary value problems with Lawson methods I Alonso-Mallo, B Cano, N Reguera IMA Journal of Numerical Analysis 37 (4), 2091-2119, 2017 | 22 | 2017 |

Order reduction and how to avoid it when explicit Runge–Kutta–Nyström methods are used to solve linear partial differential equations I Alonso-Mallo, B Cano, MJ Moreta Journal of computational and applied mathematics 176 (2), 293-318, 2005 | 22 | 2005 |

Analysis of order reduction when integrating linear initial boundary value problems with Lawson methods I Alonso-Mallo, B Cano, N Reguera Applied Numerical Mathematics 118, 64-74, 2017 | 21 | 2017 |

Conservation of invariants by symmetric multistep cosine methods for second-order partial differential equations B Cano BIT Numerical Mathematics 53, 29-56, 2013 | 19 | 2013 |

Avoiding order reduction when integrating linear initial boundary value problems with exponential splitting methods I Alonso-Mallo, B Cano, N Reguera IMA Journal of Numerical Analysis 38 (3), 1294-1323, 2018 | 18 | 2018 |

Projected explicit Lawson methods for the integration of Schrödinger equation B Cano, A González‐Pachón Numerical Methods for Partial Differential Equations 31 (1), 78-104, 2015 | 18 | 2015 |

Avoiding order reduction when integrating nonlinear Schrödinger equation with Strang method B Cano, N Reguera Journal of Computational and Applied Mathematics 316, 86-99, 2017 | 14 | 2017 |

Optimal time order when implicit Runge–Kutta–Nyström methods solve linear partial differential equations I Alonso-Mallo, B Cano, MJ Moreta Applied numerical mathematics 58 (5), 539-562, 2008 | 14 | 2008 |

Stiff oscillatory systems, delta jumps and white noise B Cano, AM Stuart, E Süli, JO Warren Foundations of Computational Mathematics 1 (1), 69-100, 2001 | 14 | 2001 |

Exponential quadrature rules without order reduction for integrating linear initial boundary value problems B Cano, MJ Moreta SIAM Journal on Numerical Analysis 56 (3), 1187-1209, 2018 | 11 | 2018 |