Follow
Madeleine Seeland
Title
Cited by
Cited by
Year
Online structural graph clustering using frequent subgraph mining
M Seeland, T Girschick, F Buchwald, S Kramer
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2010
312010
A structural cluster kernel for learning on graphs
M Seeland, A Karwath, S Kramer
Proceedings of the 18th ACM SIGKDD international conference on Knowledge …, 2012
202012
Parallel structural graph clustering
M Seeland, SA Berger, A Stamatakis, S Kramer
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2011
152011
Using local models to improve (Q) SAR predictivity
F Buchwald, T Girschick, M Seeland, S Kramer
Molecular Informatics 30 (2‐3), 205-218, 2011
152011
Fluorescence microscopy deconvolution based on Bregman iteration and Richardson-Lucy algorithm with TV regularization
S Remmele, M Seeland, J Hesser
Bildverarbeitung für die Medizin 2008, 72-76, 2008
122008
Structural clustering of millions of molecular graphs
M Seeland, AK Johannes, S Kramer
Proceedings of the 29th Annual ACM Symposium on Applied Computing, 121-128, 2014
62014
Innovative strategies to develop chemical categories using a combination of structural and toxicological properties
M Batke, M Gütlein, F Partosch, U Gundert-Remy, C Helma, S Kramer, ...
Frontiers in pharmacology 7, 321, 2016
52016
Structural Graph Clustering: Scalable Methods and Applications for Graph Classification and Regression
M Seeland
Technische Universität München, 2014
32014
Multi‐label‐classification to predict repeated dose toxicity in the context of REACH
M Batke, A Bitsch, U Gundert‐Remy, M Guetlein, C Helma, S Kramer, ...
Naunyn Schmiedebergs Arch Pharmacol 387, S45, 2014
22014
Extracting information from support vector machines for pattern-based classification
M Seeland, A Maunz, A Karwath, S Kramer
Proceedings of the 29th Annual ACM Symposium on Applied Computing, 129-136, 2014
12014
Model selection based product kernel learning for regression on graphs
M Seeland, S Kramer, B Pfahringer
Proceedings of the 28th Annual ACM Symposium on Applied Computing, 136-143, 2013
12013
Maximum Common Subgraph based locally weighted regression
M Seeland, F Buchwald, S Kramer, B Pfahringer
Proceedings of the 27th Annual ACM Symposium on Applied Computing, 165-172, 2012
12012
Optimization of curation of the dataset with data on repeated dose toxicity
U Gundert-Remy, M Batke, A Bitsch, M Gütlein, S Kramer, F Partosch, ...
Toxicology Letters 2 (238), S166, 2015
2015
Development of chemical categories by optimized clustering strategies
M Batke, A Bitsch, U Gundert-Remy, M Guetlein, C Helma, S Kramer, ...
NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY 387, S73-S73, 2014
2014
Correlations between different endpoints in repeated dose toxicity studies: occurrence of dependent and independent effects at equal dose levels in the RepDose and the" ELINCS …
M Batke, A Bitsch, U Gundert-Remy, M Guetlein, S Kramer, F Partosch, ...
NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY 387, S28-S28, 2014
2014
Entwicklung einer Strategie zur Bildung von Kategorien und Definition neuer Kategorien für die Endpunkte der subakuten, subchronischen und chronischen Toxizität zur Minimierung …
M Seeland
Technische Universität München, Institut für Informatik Lehrstuhl I12 …, 2014
2014
New strategies for the generation of chemical categories under REACH
M Batke, U Gundert-Remy, C Helma, S Kramer, S Kleppe-Nordqvist, ...
NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY 386, S6-S6, 2013
2013
New strategies to develop chemical categories in the context of REACH—Work in progress
M Batke, A Bitsch, U Gundert-Remy, M Guetlein, C Helma, S Kramer, ...
Toxicology Letters, S84, 2013
2013
Combining Modifications to Multinomial Naive Bayes for Text
A Puurula, A Puurula, A Puurula, A Bifet, M Geilke, E Frank, S Kramer, ...
Proc 8th Asia Information Retrieval Societies Conference 88, 179-186, 2012
2012
P06-005
U Gundert-Remy, M Batke, A Bitsch, M Gütlein, S Kramer, F Partosch, ...
Optimization 6, 005, 0
The system can't perform the operation now. Try again later.
Articles 1–20