A phase field approach in the numerical study of the elastic bending energy for vesicle membranes Q Du, C Liu, X Wang Journal of Computational Physics 198 (2), 450-468, 2004 | 395 | 2004 |

Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions Q Du, C Liu, X Wang Journal of computational physics 212 (2), 757-777, 2006 | 289 | 2006 |

Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches X Wang, Q Du Journal of mathematical biology 56 (3), 347-371, 2008 | 183 | 2008 |

A phase field formulation of the Willmore problem Q Du, C Liu, R Ryham, X Wang Nonlinearity 18 (3), 1249, 2005 | 177 | 2005 |

VCells: Simple and efficient superpixels using edge-weighted centroidal Voronoi tessellations J Wang, X Wang IEEE Transactions on pattern analysis and machine intelligence 34 (6), 1241-1247, 2012 | 105 | 2012 |

An edge-weighted centroidal Voronoi tessellation model for image segmentation J Wang, L Ju, X Wang IEEE Transactions on Image Processing 18 (8), 1844-1858, 2009 | 93 | 2009 |

Energetic variational approaches in modeling vesicle and fluid interactions Q Du, C Liu, R Ryham, X Wang Physica D: Nonlinear Phenomena 238 (9-10), 923-930, 2009 | 89 | 2009 |

Retrieving topological information for phase field models Q Du, C Liu, X Wang SIAM Journal on Applied Mathematics 65 (6), 1913-1932, 2005 | 84 | 2005 |

Centroidal Voronoi tessellation algorithms for image compression, segmentation, and multichannel restoration Q Du, M Gunzburger, L Ju, X Wang Journal of Mathematical Imaging and Vision 24 (2), 177-194, 2006 | 70 | 2006 |

Modeling the spontaneous curvature effects in static cell membrane deformations by a phase field formulation Q Du, C Liu, R Ryham, X Wang Communications on Pure & Applied Analysis 4 (3), 537, 2005 | 61 | 2005 |

Centroidal Voronoi tessellation based algorithms for vector fields visualization and segmentation Q Du, X Wang IEEE Visualization 2004, 43-50, 2004 | 55 | 2004 |

Efficient and stable exponential time differencing Runge–Kutta methods for phase field elastic bending energy models X Wang, L Ju, Q Du Journal of Computational Physics 316, 21-38, 2016 | 37 | 2016 |

Asymptotic analysis of phase field formulations of bending elasticity models X Wang SIAM journal on mathematical analysis 39 (5), 1367-1401, 2008 | 35 | 2008 |

Convergence of numerical approximations to a phase field bending elasticity model of membrane deformations Q Du, X Wang | 30 | 2006 |

Phase field modeling of the spontaneous curvature effect in cell membranes Q Du, C Liu, R Ryham, X Wang Comm Pure Appl Anal 4, 537-548, 2005 | 28 | 2005 |

Diffuse interface energies capturing the Euler number: Relaxation and renomalization Q Du, C Liu, R Ryham, X Wang Communications in Mathematical Sciences 5 (1), 233-242, 2007 | 22 | 2007 |

Image segmentation using local variation and edge-weighted centroidal Voronoi tessellations J Wang, L Ju, X Wang IEEE transactions on image processing 20 (11), 3242-3256, 2011 | 21 | 2011 |

Phase field models and simulations of vesicle bio-membranes X Wang | 20 | 2005 |

Modeling vesicle deformations in flow fields via energetic variational approaches Q Du, C Liu, R Ryham, X Wang preprint, 2006 | 14 | 2006 |

Simulating vesicle–substrate adhesion using two phase field functions R Gu, X Wang, M Gunzburger Journal of Computational Physics 275, 626-641, 2014 | 13 | 2014 |