Segui
Hanyu Zhao
Hanyu Zhao
Alibaba Group
Email verificata su alibaba-inc.com - Home page
Titolo
Citata da
Citata da
Anno
Gandiva: Introspective cluster scheduling for deep learning
W Xiao, R Bhardwaj, R Ramjee, M Sivathanu, N Kwatra, Z Han, P Patel, ...
13th USENIX Symposium on Operating Systems Design and Implementation (OSDI …, 2018
5982018
{HiveD}: Sharing a {GPU} cluster for deep learning with guarantees
H Zhao, Z Han, Z Yang, Q Zhang, F Yang, L Zhou, M Yang, FCM Lau, ...
14th USENIX symposium on operating systems design and implementation (OSDI …, 2020
962020
Sdpaxos: Building efficient semi-decentralized geo-replicated state machines
H Zhao, Q Zhang, Z Yang, M Wu, Y Dai
Proceedings of the ACM Symposium on Cloud Computing, 68-81, 2018
402018
Infinite-llm: Efficient llm service for long context with distattention and distributed kvcache
B Lin, C Zhang, T Peng, H Zhao, W Xiao, M Sun, A Liu, Z Zhang, L Li, ...
arXiv preprint arXiv:2401.02669, 2024
292024
MSD: Multi-self-distillation learning via multi-classifiers within deep neural networks
Y Luan, H Zhao, Z Yang, Y Dai
arXiv preprint arXiv:1911.09418, 2019
282019
SiloD: A Co-design of Caching and Scheduling for Deep Learning Clusters
H Zhao, Z Han, Z Yang, Q Zhang, M Li, F Yang, Q Zhang, B Li, Y Yang, ...
Proceedings of the Eighteenth European Conference on Computer Systems, 883-898, 2023
202023
Llumnix: Dynamic Scheduling for Large Language Model Serving
B Sun, Z Huang, H Zhao, W Xiao, X Zhang, Y Li, W Lin
arXiv preprint arXiv:2406.03243, 2024
182024
GoldMiner: Elastic Scaling of Training Data Pre-Processing Pipelines for Deep Learning
H Zhao, Z Yang, Y Cheng, C Tian, S Ren, W Xiao, M Yuan, L Chen, K Liu, ...
Proceedings of the ACM on Management of Data 1 (2), 1-25, 2023
162023
SCHED²: Scheduling Deep Learning Training via Deep Reinforcement Learning
Y Luan, X Chen, H Zhao, Z Yang, Y Dai
2019 IEEE Global Communications Conference (GLOBECOM), 1-7, 2019
152019
Zoomer: Boosting retrieval on web-scale graphs by regions of interest
Y Jiang, Y Cheng, H Zhao, W Zhang, X Miao, Y He, L Wang, Z Yang, ...
2022 IEEE 38th International Conference on Data Engineering (ICDE), 2224-2236, 2022
132022
Scheduling CPU for GPU-based deep learning jobs
W Xiao, Z Han, H Zhao, X Peng, Q Zhang, F Yang, L Zhou
Proceedings of the ACM Symposium on Cloud Computing, 503-503, 2018
112018
EasyScale: Elastic Training with Consistent Accuracy and Improved Utilization on GPUs
M Li, W Xiao, H Yang, B Sun, H Zhao, S Ren, Z Luan, X Jia, Y Liu, Y Li, ...
Proceedings of the International Conference for High Performance Computing …, 2023
82023
Easyscale: Accuracy-consistent elastic training for deep learning
M Li, W Xiao, B Sun, H Zhao, H Yang, S Ren, Z Luan, X Jia, Y Liu, Y Li, ...
arXiv preprint arXiv:2208.14228, 2022
82022
Instance-wise prompt tuning for pretrained language models
Y Jiang, H Yang, J Lin, H Zhao, A Yang, C Zhou, H Yang, Z Yang, B Cui
arXiv preprint arXiv:2206.01958, 2022
72022
ROAM: memory-efficient large DNN training via optimized operator ordering and memory layout
H Shu, A Wang, Z Shi, H Zhao, Y Li, L Lu
arXiv preprint arXiv:2310.19295, 2023
52023
Boosting Large-scale Parallel Training Efficiency with C4: A Communication-Driven Approach
J Dong, B Luo, J Zhang, P Zhang, F Feng, Y Zhu, A Liu, Z Chen, Y Shi, ...
arXiv preprint arXiv:2406.04594, 2024
32024
A Topology-Aware Performance Prediction Model for Distributed Deep Learning on GPU Clusters
Z Lin, X Chen, H Zhao, Y Luan, Z Yang, Y Dai
2020 IEEE International Conference on Big Data (Big Data), 2795-2801, 2020
32020
Dynamic allocation of computing resources
Q Zhang, L Zhou, Y Mao, F Yang, H Zhao, Z Han
US Patent App. 17/609,700, 2022
22022
Rubick: Exploiting Job Reconfigurability for Deep Learning Cluster Scheduling
X Zhang, H Zhao, W Xiao, X Jia, F Xu, Y Li, W Lin, F Liu
arXiv preprint arXiv:2408.08586, 2024
12024
Building efficient and available distributed transaction with Paxos-based coding consensus
S Li, Q Zhang, Z Yang, H Zhao, Y Dai
IEEE INFOCOM 2018-IEEE Conference on Computer Communications Workshops …, 2018
12018
Il sistema al momento non può eseguire l'operazione. Riprova più tardi.
Articoli 1–20