Follow
Will Dabney
Will Dabney
DeepMind
Verified email at google.com - Homepage
Title
Cited by
Cited by
Year
Rainbow: Combining improvements in deep reinforcement learning
M Hessel, J Modayil, H Van Hasselt, T Schaul, G Ostrovski, W Dabney, ...
Proceedings of the AAAI conference on artificial intelligence 32 (1), 2018
28422018
A distributional perspective on reinforcement learning
MG Bellemare*, W Dabney*, R Munos
arXiv preprint arXiv:1707.06887, 2017
19112017
Distributional reinforcement learning with quantile regression
W Dabney, M Rowland, M Bellemare, R Munos
Proceedings of the AAAI conference on artificial intelligence 32 (1), 2018
8992018
Distributed distributional deterministic policy gradients
G Barth-Maron, MW Hoffman, D Budden, W Dabney, D Horgan, D Tb, ...
arXiv preprint arXiv:1804.08617, 2018
6742018
Successor features for transfer in reinforcement learning
A Barreto, W Dabney, R Munos, JJ Hunt, T Schaul, HP van Hasselt, ...
Advances in neural information processing systems 30, 2017
6722017
Implicit quantile networks for distributional reinforcement learning
W Dabney, G Ostrovski, D Silver, R Munos
International conference on machine learning, 1096-1105, 2018
6382018
Recurrent experience replay in distributed reinforcement learning
S Kapturowski, G Ostrovski, J Quan, R Munos, W Dabney
International conference on learning representations, 2018
5852018
A distributional code for value in dopamine-based reinforcement learning
W Dabney, Z Kurth-Nelson, N Uchida, CK Starkweather, D Hassabis, ...
Nature 577 (7792), 671-675, 2020
4582020
The cramer distance as a solution to biased wasserstein gradients
MG Bellemare, I Danihelka, W Dabney, S Mohamed, ...
arXiv preprint arXiv:1705.10743, 2017
4302017
Revisiting fundamentals of experience replay
W Fedus, P Ramachandran, R Agarwal, Y Bengio, H Larochelle, ...
International conference on machine learning, 3061-3071, 2020
3152020
Deep reinforcement learning and its neuroscientific implications
M Botvinick, JX Wang, W Dabney, KJ Miller, Z Kurth-Nelson
Neuron 107 (4), 603-616, 2020
2212020
Fast task inference with variational intrinsic successor features
S Hansen, W Dabney, A Barreto, T Van de Wiele, D Warde-Farley, V Mnih
arXiv preprint arXiv:1906.05030, 2019
1812019
Distributional reinforcement learning
MG Bellemare, W Dabney, M Rowland
MIT Press, 2023
1542023
An analysis of categorical distributional reinforcement learning
M Rowland, M Bellemare, W Dabney, R Munos, YW Teh
International Conference on Artificial Intelligence and Statistics, 29-37, 2018
1402018
The reactor: A fast and sample-efficient actor-critic agent for reinforcement learning
A Gruslys, W Dabney, MG Azar, B Piot, M Bellemare, R Munos
arXiv preprint arXiv:1704.04651, 2017
1112017
Temporally-extended {\epsilon}-greedy exploration
W Dabney, G Ostrovski, A Barreto
arXiv preprint arXiv:2006.01782, 2020
1092020
Understanding and preventing capacity loss in reinforcement learning
C Lyle, M Rowland, W Dabney
arXiv preprint arXiv:2204.09560, 2022
1072022
A geometric perspective on optimal representations for reinforcement learning
M Bellemare, W Dabney, R Dadashi, A Ali Taiga, PS Castro, N Le Roux, ...
Advances in neural information processing systems 32, 2019
1072019
On the expressivity of markov reward
D Abel, W Dabney, A Harutyunyan, MK Ho, M Littman, D Precup, S Singh
Advances in Neural Information Processing Systems 34, 7799-7812, 2021
1032021
Statistics and samples in distributional reinforcement learning
M Rowland, R Dadashi, S Kumar, R Munos, MG Bellemare, W Dabney
International Conference on Machine Learning, 5528-5536, 2019
1012019
The system can't perform the operation now. Try again later.
Articles 1–20