Follow
Théo Verhelst
Théo Verhelst
Postdoc at European Space Agency, Advanced Concepts Team
Verified email at esa.int - Homepage
Title
Cited by
Cited by
Year
Transfer learning strategies for credit card fraud detection
B Lebichot, T Verhelst, YA Le Borgne, L He-Guelton, F Oble, G Bontempi
IEEE access 9, 114754-114766, 2021
242021
Understanding Telecom Customer Churn with Machine Learning: From Prediction to Causal Inference
T Verhelst, O Caelen, JC Dewitte, B Lebichot, G Bontempi
Artificial Intelligence and Machine Learning: 31st Benelux AI Conference …, 2019
92019
Uplift vs. predictive modeling: a theoretical analysis
T Verhelst, R Petit, W Verbeke, G Bontempi
arXiv preprint arXiv:2309.12036, 2023
62023
Churn Prediction and Causal Analysis on Telecom Customer Data
T Verhelst
Université Libre de Bruxelles, 2019
42019
Predicting reach to find persuadable customers: Improving uplift models for churn prevention
T Verhelst, J Shrestha, D Mercier, JC Dewitte, G Bontempi
Discovery Science: 24th International Conference, DS 2021, Halifax, NS …, 2021
32021
Partial counterfactual identification and uplift modeling: theoretical results and real-world assessment
T Verhelst, D Mercier, J Shrestha, G Bontempi
Machine Learning 113 (3), 1043-1067, 2024
22024
A churn prediction dataset from the telecom sector: a new benchmark for uplift modeling
T Verhelst, D Mercier, J Shrestha, G Bontempi
arXiv preprint arXiv:2312.07206, 2023
12023
Predictive and causal modeling of customer churn: lessons learned from empirical and theoretical research
T Verhelst
Université Libre de Bruxelles, 2024
2024
The system can't perform the operation now. Try again later.
Articles 1–8