Folgen
David M Howcroft
Titel
Zitiert von
Zitiert von
Jahr
Twenty years of confusion in human evaluation: NLG needs evaluation sheets and standardised definitions
DM Howcroft, A Belz, MA Clinciu, D Gkatzia, SA Hasan, S Mahamood, ...
Proceedings of the 13th International Conference on Natural Language …, 2020
1842020
Semantic Noise Matters for Neural Natural Language Generation
O Dušek, DM Howcroft, V Rieser
Proc. of the 12th International Conference on Natural Language Generation …, 2019
1102019
Disentangling the properties of human evaluation methods: A classification system to support comparability, meta-evaluation and reproducibility testing
A Belz, S Mille, DM Howcroft
Proceedings of the 13th International Conference on Natural Language …, 2020
622020
OTTers: One-turn Topic Transitions for Open-Domain Dialogue
K Sevegnani, DM Howcroft, I Konstas, V Rieser
Proceedings of the 59th Annual Meeting of the Association for Computational …, 2021
382021
Psycholinguistic Models of Sentence Processing Improve Sentence Readability Ranking
DM Howcroft, V Demberg
Proc. of the 15th Conference of the European Chapter of the Association for …, 2017
282017
How speakers adapt object descriptions to listeners under load
J Vogels, DM Howcroft, E Tourtouri, V Demberg
Language, Cognition and Neuroscience 35 (1), 78-92, 2020
192020
Enhancing the expression of contrast in the SPaRKy Restaurant Corpus
DM Howcroft, C Nakatsu, M White
Proceedings of the 14th European Workshop on Natural Language Generation, 30-39, 2013
182013
What happens if you treat ordinal ratings as interval data? Human evaluations in NLP are even more under-powered than you think
DM Howcroft, V Rieser
Proceedings of the 2021 Conference on Empirical Methods in Natural Language …, 2021
162021
G-TUNA: a corpus of referring expressions in German, including duration information
D Howcroft, J Vogels, V Demberg
Proceedings of the 10th International Conference on Natural Language …, 2017
92017
Search challenges in natural language generation with complex optimization objectives
V Demberg, J Hoffmann, DM Howcroft, D Klakow, Á Torralba
KI-Künstliche Intelligenz 30 (1), 63-69, 2016
92016
The Extended SPaRKy Restaurant Corpus: designing a corpus with variable information density
DM Howcroft, D Klakow, V Demberg, SI Campus
Proc. Interspeech 2017, 3757-3761, 2017
62017
Inducing clause-combining rules: A case study with the sparky restaurant corpus
M White, DM Howcroft
Proceedings of the 15th European Workshop on Natural Language Generation …, 2015
62015
The phonetics of the Modern-day reflexes of the Proto-palatal click in Juu languages
A Miller, J Holliday, D Howcroft, S Phillips, B Smith, TH Tsui
Handout of paper presented at the 4th International Symposium on Khoisan …, 2011
52011
From OpenCCG to AI Planning: Detecting Infeasible Edges in Sentence Generation
M Schwenger, A Torralba, J Hoffmann, DM Howcroft, V Demberg
International Conference on Computational Linguistics, 2016
42016
Most NLG is Low-Resource: here’s what we can do about it
DM Howcroft, D Gkatzia
Proceedings of the 2nd Workshop on Natural Language Generation, Evaluation …, 2022
32022
Building a dual dataset of text-and image-grounded conversations and summarisation in Gàidhlig (Scottish Gaelic)
DM Howcroft, W Lamb, A Groundwater, D Gkatzia
Proceedings of the 16th International Natural Language Generation Conference …, 2023
12023
Toward Bayesian Synchronous Tree Substitution Grammars for Sentence Planning
DM Howcroft, D Klakow, V Demberg
Proceedings of the 11th International Conference on Natural Language …, 2018
12018
Ranking sentences by complexity
D Howcroft
Master’s thesis, Saarland University, 2015
12015
LOWRECORP: the Low-Resource NLG Corpus Building Challenge
KR Chandu, DM Howcroft, D Gkatzia, YL Chung, Y Hou, CC Emezue, ...
Proceedings of the 16th International Natural Language Generation Conference …, 2023
2023
enunlg: a Python library for reproducible neural data-to-text experimentation
DM Howcroft, D Gkatzia
Proceedings of the 16th International Natural Language Generation Conference …, 2023
2023
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20