Folgen
Rahmatollah Beheshti
Rahmatollah Beheshti
Sonstige NamenRahmat Beheshti
Assistant Professor, University of Delaware
Bestätigte E-Mail-Adresse bei udel.edu - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Obesity Prediction with EHR Data: A deep learning approach with interpretable elements
M Gupta, TLT Phan, HT Bunnell, R Beheshti
ACM Transactions on Computing for Healthcare (HEALTH) 3 (3), 1-19, 2022
742022
Comparing methods of targeting obesity interventions in populations: an agent-based simulation
R Beheshti, M Jalalpour, TA Glass
SSM-population health 3, 211-218, 2017
412017
An extensive data processing pipeline for MIMIC-IV
M Gupta, B Gallamoza, N Cutrona, P Dhakal, R Poulain, R Beheshti
Machine Learning for Health, 311-325, 2022
372022
A hybrid modeling approach for parking and traffic prediction in urban simulations
R Beheshti, G Sukthankar
AI & society 30, 333-344, 2015
352015
Predicting cardiovascular health trajectories in time-series electronic health records with LSTM models
A Guo, R Beheshti, YM Khan, JR Langabeer, RE Foraker
BMC medical informatics and decision making 21, 1-10, 2021
312021
A normative agent-based model for predicting smoking cessation trends
R Beheshti, G Sukthankar
Proceedings of the 2014 international conference on Autonomous agents and …, 2014
312014
Concurrent imputation and prediction on EHR data using bi-directional GANs: Bi-GANs for EHR imputation and prediction
M Gupta, TLT Phan, HT Bunnell, R Beheshti
Proceedings of the 12th ACM Conference on Bioinformatics, Computational …, 2021
252021
Simulated models suggest that price per calorie is the dominant price metric that low-income individuals use for food decision making
R Beheshti, T Igusa, J Jones-Smith
The Journal of nutrition 146 (11), 2304-2311, 2016
252016
Improving fairness in AI models on electronic health records: The case for federated learning methods
R Poulain, MF Bin Tarek, R Beheshti
Proceedings of the 2023 ACM Conference on Fairness, Accountability, and …, 2023
232023
Time-series imputation and prediction with bi-directional generative adversarial networks
M Gupta, R Beheshti
arXiv preprint arXiv:2009.08900, 2020
192020
Cognitive social learners: An architecture for modeling normative behavior
R Beheshti, AM Ali, G Sukthankar
Proceedings of the AAAI Conference on Artificial Intelligence 29 (1), 2015
182015
Extracting agent-based models of human transportation patterns
R Beheshti, G Sukthankar
2012 International Conference on Social Informatics, 157-164, 2012
182012
Multi-modal predictive models of diabetes progression
R Ramazi, C Perndorfer, E Soriano, JP Laurenceau, R Beheshti
Proceedings of the 10th ACM International Conference on Bioinformatics …, 2019
172019
Taking dietary habits into account: A computational method for modeling food choices that goes beyond price
R Beheshti, JC Jones-Smith, T Igusa
PLoS One 12 (5), e0178348, 2017
172017
Few-shot learning with semi-supervised transformers for electronic health records
R Poulain, M Gupta, R Beheshti
Machine Learning for Healthcare Conference, 853-873, 2022
142022
Predicting progression patterns of type 2 diabetes using multi-sensor measurements
R Ramazi, C Perndorfer, EC Soriano, JP Laurenceau, R Beheshti
Smart Health 21, 100206, 2021
112021
HOMAN, a learning based negotiation method for holonic multi-agent systems
R Beheshti, N Mozayani
Journal of Intelligent & Fuzzy Systems 26 (2), 655-666, 2014
112014
Bias patterns in the application of LLMs for clinical decision support: A comprehensive study
R Poulain, H Fayyaz, R Beheshti
arXiv preprint arXiv:2404.15149, 2024
102024
Transformer-based multi-target regression on electronic health records for primordial prevention of cardiovascular disease
R Poulain, M Gupta, R Foraker, R Beheshti
2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM …, 2021
102021
A predictive model of rat calorie intake as a function of diet energy density
R Beheshti, Y Treesukosol, T Igusa, TH Moran
American Journal of Physiology-Regulatory, Integrative and Comparative …, 2018
92018
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20