Nonharmonic analysis of boundary value problems M Ruzhansky, N Tokmagambetov International Mathematics Research Notices 2016 (12), 3548-3615, 2016 | 59 | 2016 |

Schatten classes, nuclearity and nonharmonic analysis on compact manifolds with boundary J Delgado, M Ruzhansky, N Tokmagambetov Journal de Mathematiques Pures et Appliquees 107 (6), 758-783, 2017 | 45 | 2017 |

On a nonlocal boundary value problem for the multidimensional heat equation in a noncylindrical domain TS Kal'menov, NE Tokmagambetov Siberian Mathematical Journal 54 (6), 1023-1028, 2013 | 36 | 2013 |

Nonharmonic analysis of boundary value problems without WZ condition M Ruzhansky, N Tokmagambetov Mathematical Modelling of Natural Phenomena 12 (1), 115-140, 2017 | 31 | 2017 |

Pseudo-differential operators generated by a non-local boundary value problem B Kanguzhin, N Tokmagambetov, K Tulenov Complex Variables and Elliptic Equations 60 (1), 107-117, 2015 | 31 | 2015 |

Very weak solutions of wave equation for Landau Hamiltonian with irregular electromagnetic field M Ruzhansky, N Tokmagambetov Letters in Mathematical Physics 107 (4), 591-618, 2017 | 30 | 2017 |

On transparent boundary conditions for the high--order heat equation D Suragan, N Tokmagambetov Sib. Èlektron. Mat. Izv., 2013, Volume 10, Pages 141–149, arXiv preprint …, 2013 | 30 | 2013 |

Laplace operator with *δ*-like potentialsBE Kanguzhin, DB Nurakhmetov, NE Tokmagambetov Russian Mathematics 58 (2), 6-12, 2014 | 20 | 2014 |

Wave equation for operators with discrete spectrum and irregular propagation speed M Ruzhansky, N Tokmagambetov Archive for Rational Mechanics and Analysis 226 (3), 1161-1207, 2017 | 19 | 2017 |

A regularized trace formula for a well-perturbed Laplace operator BE Kanguzhin, NE Tokmagambetov Doklady Mathematics 91 (1), 1-4, 2015 | 19 | 2015 |

The Fourier transform and convolutions generated by a differential operator with boundary condition on a segment B Kanguzhin, N Tokmagambetov Fourier analysis, 235-251, 2014 | 14 | 2014 |

On a very weak solution of the wave equation for a Hamiltonian in a singular electromagnetic field MV Ruzhansky, NE Tokmagambetov Mathematical Notes 103 (5-6), 856-858, 2018 | 12 | 2018 |

Resolvents of well-posed problems for finite-rank perturbations of the polyharmonic operator in a punctured domain. B Kanguzhin, N Tokmagambetov Siberian Mathematical Journal 57 (2), 2016 | 12 | 2016 |

On regularized trace formulas for a well-posed perturbation of the m-Laplace operator BE Kanguzhin, NE Tokmagambetov Differential Equations 51 (12), 1583-1588, 2015 | 12 | 2015 |

Nonlinear damped wave equations for the sub-Laplacian on the Heisenberg group and for Rockland operators on graded Lie groups M Ruzhansky, N Tokmagambetov Journal of Differential Equations 265 (10), 5212-5236, 2018 | 11 | 2018 |

Fractional analogue of Sturm–Liouville operator N Tokmagambetov, BT Torebek Documenta Mathematica 21 (2016), 1503-1514, 2016 | 10 | 2016 |

Convolution, Fourier analysis, and distributions generated by Riesz bases M Ruzhansky, N Tokmagambetov Monatshefte für Mathematik 187 (1), 147-170, 2018 | 9 | 2018 |

On convolutions in Hilbert spaces B Kanguzhin, M Ruzhansky, N Tokmagambetov Springer Verlag, 2017 | 9 | 2017 |

Best constants in Sobolev and Gagliardo-Nirenberg inequalities on graded groups and ground states for higher order nonlinear subelliptic equations M Ruzhansky, N Tokmagambetov, N Yessirkegenov arXiv preprint arXiv:1704.01490, 2017 | 8 | 2017 |

Fractional Sturm–Liouville Equations: Self-Adjoint Extensions N Tokmagambetov, BT Torebek Complex Analysis and Operator Theory 13 (5), 2259-2267, 2019 | 5 | 2019 |