Generative adversarial imitation learning J Ho, S Ermon Advances in Neural Information Processing Systems, 4565-4573, 2016 | 1110 | 2016 |
Evolution strategies as a scalable alternative to reinforcement learning T Salimans, J Ho, X Chen, S Sidor, I Sutskever arXiv preprint arXiv:1703.03864, 2017 | 766 | 2017 |
One-shot imitation learning Y Duan, M Andrychowicz, B Stadie, J Ho, J Schneider, I Sutskever, ... Advances in Neural Information Processing Systems, 1087-1098, 2017 | 412 | 2017 |
Motion planning with sequential convex optimization and convex collision checking J Schulman, Y Duan, J Ho, A Lee, I Awwal, H Bradlow, J Pan, S Patil, ... The International Journal of Robotics Research 33 (9), 1251-1270, 2014 | 404 | 2014 |
Finding locally optimal, collision-free trajectories with sequential convex optimization. J Schulman, J Ho, AX Lee, I Awwal, H Bradlow, P Abbeel Robotics: science and systems 9 (1), 1-10, 2013 | 383 | 2013 |
Meta learning shared hierarchies K Frans, J Ho, X Chen, P Abbeel, J Schulman arXiv preprint arXiv:1710.09767, 2017 | 189 | 2017 |
Tracking deformable objects with point clouds J Schulman, A Lee, J Ho, P Abbeel 2013 IEEE International Conference on Robotics and Automation, 1130-1137, 2013 | 135 | 2013 |
Learning from demonstrations through the use of non-rigid registration J Schulman, J Ho, C Lee, P Abbeel Robotics Research, 339-354, 2016 | 115 | 2016 |
Flow++: Improving flow-based generative models with variational dequantization and architecture design J Ho, X Chen, A Srinivas, Y Duan, P Abbeel International Conference on Machine Learning, 2019 | 105 | 2019 |
Evolved policy gradients R Houthooft, Y Chen, P Isola, B Stadie, F Wolski, J Ho, P Abbeel Advances in Neural Information Processing Systems, 5405-5414, 2018 | 99 | 2018 |
Model-Free Imitation Learning with Policy Optimization J Ho, JK Gupta, S Ermon International Conference on Machine Learning, 2016 | 75 | 2016 |
Denoising diffusion probabilistic models J Ho, A Jain, P Abbeel arXiv preprint arXiv:2006.11239, 2020 | 22 | 2020 |
Axial attention in multidimensional transformers J Ho, N Kalchbrenner, D Weissenborn, T Salimans arXiv preprint arXiv:1912.12180, 2019 | 19 | 2019 |
Generalization in robotic manipulation through the use of non-rigid registration J Schulman, J Ho, C Lee, P Abbeel Proceedings of the 16th International Symposium on Robotics Research (ISRR), 2013 | 19 | 2013 |
Bit-Swap: Recursive Bits-Back Coding for Lossless Compression with Hierarchical Latent Variables FH Kingma, P Abbeel, J Ho International Conference on Machine Learning, 2019 | 16 | 2019 |
Generative models A Karpathy, P Abbeel, G Brockman, P Chen, V Cheung, R Duan, ... by openAI. June, 2016 | 13 | 2016 |
Compression with Flows via Local Bits-Back Coding J Ho, E Lohn, P Abbeel Advances in Neural Information Processing Systems, 3874-3883, 2019 | 8 | 2019 |
Generative Adversarial Imitation Learning (GAIL) Q Liu, HJ Cho, P Wang, J Ho, S Ermon | | 2020 |
Natural Image Manipulation for Autoregressive Models Using Fisher Scores W Yan, J Ho, P Abbeel arXiv preprint arXiv:1912.05015, 2019 | | 2019 |
CS294-158 Deep Unsupervised Learning P Abbeel, P Chen, J Ho, A Srinivas | | |