Hessenberg varieties, Slodowy slices, and integrable systems H Abe, P Crooks Math. Z. 291 (3-4), 1093-1132, 2019 | 17 | 2019 |

Complex adjoint orbits in Lie theory and geometry P Crooks Expo. Math. 37 (2), 104-144, 2019 | 14 | 2019 |

Perverse sheaves and the cohomology of regular Hessenberg varieties A Balibanu, P Crooks Transform. Groups. 29 (3), 909-933, 2024 | 13 | 2024 |

Hessenberg varieties for the minimal nilpotent orbit H Abe, P Crooks Pure Appl. Math. Q. 12 (2), 183-223, 2016 | 13 | 2016 |

Abstract integrable systems on hyperkähler manifolds arising from Slodowy slices P Crooks, S Rayan Math. Res. Lett. 26 (1), 9-33, 2019 | 10 | 2019 |

Symplectic reduction along a submanifold P Crooks, M Mayrand Compos. Math.158 (9), 1878–1934, 2022 | 7 | 2022 |

The log symplectic geometry of Poisson slices P Crooks, M Röser J. Symplectic Geom. 20 (1), 135-190, 2022 | 7 | 2022 |

An application of spherical geometry to hyperkähler slices P Crooks, M van Pruijssen Canad. J. Math. 73 (3), 687-716, 2021 | 6 | 2021 |

An equivariant description of certain holomorphic symplectic varieties P Crooks Bull. Aust. Math. Soc. 97 (2), 207-214, 2018 | 5 | 2018 |

Kostant-Toda lattices and the universal centralizer P Crooks J. Geom. Phys. 150, 16pp., 2020 | 4 | 2020 |

On projective equivalence of univariate polynomial subspaces P Crooks, R Milson SIGMA Symmetry Integrability Geom. Methods Appl. 5, Paper 107, 2009 | 4 | 2009 |

Hessenberg varieties and Poisson slices P Crooks, M Röser Contemp. Math. 790, 25-57, 2023 | 3 | 2023 |

Gelfand-Cetlin abelianizations of symplectic quotients P Crooks, J Weitsman arXiv preprint arXiv:2209.04978, 2022 | 3 | 2022 |

Slodowy slices and the complete integrability of Mishchenko-Fomenko subalgebras on regular adjoint orbits P Crooks, S Rosemann, M Röser arXiv:1803.04942, 2018 | 3 | 2018 |

Generalized Equivariant Cohomology and Stratifications P Crooks, T Holden Canad. Math. Bull. 59 (3), 483-496, 2016 | 3 | 2016 |

The Torus-Equivariant Cohomology of Nilpotent Orbits P Crooks J. Lie Theory 25 (4), 1073-1087, 2015 | 3 | 2015 |

Properties of nilpotent orbit complexification P Crooks J. Gen. Lie Theory Appl. 10 (2016), no. S2, Art. ID 012, 6 pp., 2016 | 2 | 2016 |

Some results on equivariant contact geometry for partial flag varieties P Crooks, S Rayan Internat. J. Math. 27 (8), 13pp., 2016 | 2 | 2016 |

The Moore-Tachikawa conjecture via shifted symplectic geometry P Crooks, M Mayrand arXiv preprint arXiv:2409.03532, 2024 | 1 | 2024 |

Scheme-theoretic coisotropic reduction P Crooks, M Mayrand arXiv preprint arXiv:2408.11932, 2024 | 1 | 2024 |