Follow
Muhammed Shuaibi
Muhammed Shuaibi
Research Engineer, FAIR, Meta
Verified email at meta.com - Homepage
Title
Cited by
Cited by
Year
Open catalyst 2020 (OC20) dataset and community challenges
L Chanussot, A Das, S Goyal, T Lavril, M Shuaibi, M Riviere, K Tran, ...
Acs Catalysis 11 (10), 6059-6072, 2021
5652021
The Open Catalyst 2022 (OC22) dataset and challenges for oxide electrocatalysts
R Tran, J Lan, M Shuaibi, BM Wood, S Goyal, A Das, J Heras-Domingo, ...
ACS Catalysis 13 (5), 3066-3084, 2023
1462023
An introduction to electrocatalyst design using machine learning for renewable energy storage
CL Zitnick, L Chanussot, A Das, S Goyal, J Heras-Domingo, C Ho, W Hu, ...
arXiv preprint arXiv:2010.09435, 2020
922020
Rotation invariant graph neural networks using spin convolutions
M Shuaibi, A Kolluru, A Das, A Grover, A Sriram, Z Ulissi, CL Zitnick
arXiv preprint arXiv:2106.09575, 2021
852021
Forcenet: A graph neural network for large-scale quantum calculations
W Hu, M Shuaibi, A Das, S Goyal, A Sriram, J Leskovec, D Parikh, ...
arXiv preprint arXiv:2103.01436, 2021
732021
GemNet-OC: developing graph neural networks for large and diverse molecular simulation datasets
J Gasteiger, M Shuaibi, A Sriram, S Günnemann, Z Ulissi, CL Zitnick, ...
arXiv preprint arXiv:2204.02782, 2022
662022
Spherical channels for modeling atomic interactions
L Zitnick, A Das, A Kolluru, J Lan, M Shuaibi, A Sriram, Z Ulissi, B Wood
Advances in Neural Information Processing Systems 35, 8054-8067, 2022
652022
Open challenges in developing generalizable large-scale machine-learning models for catalyst discovery
A Kolluru, M Shuaibi, A Palizhati, N Shoghi, A Das, B Wood, CL Zitnick, ...
ACS Catalysis 12 (14), 8572-8581, 2022
442022
Enabling robust offline active learning for machine learning potentials using simple physics-based priors
M Shuaibi, S Sivakumar, RQ Chen, ZW Ulissi
Machine Learning: Science and Technology 2 (2), 025007, 2020
382020
AdsorbML: a leap in efficiency for adsorption energy calculations using generalizable machine learning potentials
J Lan, A Palizhati, M Shuaibi, BM Wood, B Wander, A Das, M Uyttendaele, ...
npj Computational Materials 9 (1), 172, 2023
332023
Transfer learning using attentions across atomic systems with graph neural networks (TAAG)
A Kolluru, N Shoghi, M Shuaibi, S Goyal, A Das, CL Zitnick, Z Ulissi
The Journal of Chemical Physics 156 (18), 2022
322022
How do graph networks generalize to large and diverse molecular systems
J Gasteiger, M Shuaibi, A Sriram, S Günnemann, Z Ulissi, CL Zitnick, ...
arXiv preprint arXiv 2204, 2022
182022
Adsorbml: Accelerating adsorption energy calculations with machine learning
J Lan, A Palizhati, M Shuaibi, BM Wood, B Wander, A Das, M Uyttendaele, ...
arXiv preprint arXiv:2211.16486 1 (2), 7, 2022
132022
Chemical Properties from Graph Neural Network-Predicted Electron Densities
EM Sunshine, M Shuaibi, ZW Ulissi, JR Kitchin
The Journal of Physical Chemistry C 127 (48), 23459-23466, 2023
122023
Nima Shoghi, et al
R Tran, J Lan, M Shuaibi, BM Wood, S Goyal, A Das, J Heras-Domingo, ...
The open catalyst, 3066-3084, 2022
112022
Brook Wander, Abhishek Das, Matt Uyttendaele, C Lawrence Zitnick, and Zachary W Ulissi. Adsorbml: Accelerating adsorption energy calculations with machine learning
J Lan, A Palizhati, M Shuaibi, BM Wood
arXiv preprint arXiv:2211.16486, 2022
102022
Open materials 2024 (omat24) inorganic materials dataset and models
L Barroso-Luque, M Shuaibi, X Fu, BM Wood, M Dzamba, M Gao, A Rizvi, ...
arXiv preprint arXiv:2410.12771, 2024
82024
CatTSunami: Accelerating Transition State Energy Calculations with Pre-trained Graph Neural Networks
B Wander, M Shuaibi, JR Kitchin, ZW Ulissi, CL Zitnick
arXiv preprint arXiv:2405.02078, 2024
52024
AmpTorch: A Python package for scalable fingerprint-based neural network training on multi-element systems with integrated uncertainty quantification
M Shuaibi, Y Hu, X Lei, BM Comer, M Adams, J Paras, RQ Chen, E Musa, ...
Journal of Open Source Software 8 (87), 5035, 2023
42023
Generalizing denoising to non-equilibrium structures improves equivariant force fields
YL Liao, T Smidt, M Shuaibi, A Das
arXiv preprint arXiv:2403.09549, 2024
32024
The system can't perform the operation now. Try again later.
Articles 1–20