Follow
Ilya Tolstikhin
Ilya Tolstikhin
Google Deepmind
Verified email at google.com - Homepage
Title
Cited by
Cited by
Year
Mlp-mixer: An all-mlp architecture for vision
IO Tolstikhin, N Houlsby, A Kolesnikov, L Beyer, X Zhai, T Unterthiner, ...
Advances in neural information processing systems 34, 24261-24272, 2021
16432021
Wasserstein auto-encoders
I Tolstikhin, O Bousquet, S Gelly, B Schoelkopf
arXiv preprint arXiv:1711.01558, 426-433, 2017
11412017
Adagan: Boosting generative models
IO Tolstikhin, S Gelly, O Bousquet, CJ Simon-Gabriel, B Schölkopf
Advances in neural information processing systems 30, 2017
2682017
Towards a learning theory of cause-effect inference
D Lopez-Paz, K Muandet, B Schölkopf, I Tolstikhin
International Conference on Machine Learning, 1452-1461, 2015
1932015
From optimal transport to generative modeling: the VEGAN cookbook
O Bousquet, S Gelly, I Tolstikhin, CJ Simon-Gabriel, B Schoelkopf
URL http://arxiv. org/abs/1705.07642, 2017
1552017
Minimax estimation of maximum mean discrepancy with radial kernels
IO Tolstikhin, BK Sriperumbudur, B Schölkopf
Advances in Neural Information Processing Systems 29, 2016
1102016
PAC-Bayes-empirical-Bernstein inequality
IO Tolstikhin, Y Seldin
Advances in Neural Information Processing Systems 26, 2013
782013
What do neural networks learn when trained with random labels?
H Maennel, IM Alabdulmohsin, IO Tolstikhin, R Baldock, O Bousquet, ...
Advances in Neural Information Processing Systems 33, 19693-19704, 2020
692020
Minimax estimation of kernel mean embeddings
I Tolstikhin, BK Sriperumbudur, K Mu
Journal of Machine Learning Research 18 (86), 1-47, 2017
692017
Predicting neural network accuracy from weights
T Unterthiner, D Keysers, S Gelly, O Bousquet, I Tolstikhin
arXiv preprint arXiv:2002.11448, 2020
572020
On the latent space of wasserstein auto-encoders
PK Rubenstein, B Schoelkopf, I Tolstikhin
arXiv preprint arXiv:1802.03761, 2018
542018
Practical and consistent estimation of f-divergences
P Rubenstein, O Bousquet, J Djolonga, C Riquelme, IO Tolstikhin
Advances in Neural Information Processing Systems 32, 2019
432019
Differentially private database release via kernel mean embeddings
M Balog, I Tolstikhin, B Schölkopf
International Conference on Machine Learning, 414-422, 2018
422018
When can unlabeled data improve the learning rate?
C Göpfert, S Ben-David, O Bousquet, S Gelly, I Tolstikhin, R Urner
Conference on Learning Theory, 1500-1518, 2019
262019
Learning Disentangled Representations with Wasserstein Auto-Encoders.
PK Rubenstein, B Schölkopf, IO Tolstikhin
ICLR (Workshop), 2018
252018
Genet: Deep representations for metagenomics
M Rojas-Carulla, I Tolstikhin, G Luque, N Youngblut, R Ley, B Schölkopf
arXiv preprint arXiv:1901.11015, 2019
232019
Localized complexities for transductive learning
I Tolstikhin, G Blanchard, M Kloft
Conference on Learning Theory, 857-884, 2014
192014
Competitive training of mixtures of independent deep generative models
F Locatello, D Vincent, I Tolstikhin, G Rätsch, S Gelly, B Schölkopf
arXiv preprint arXiv:1804.11130, 2018
172018
Permutational Rademacher complexity: a new complexity measure for transductive learning
I Tolstikhin, N Zhivotovskiy, G Blanchard
Algorithmic Learning Theory: 26th International Conference, ALT 2015, Banff …, 2015
142015
Probabilistic active learning of functions in structural causal models
PK Rubenstein, I Tolstikhin, P Hennig, B Schölkopf
arXiv preprint arXiv:1706.10234, 2017
122017
The system can't perform the operation now. Try again later.
Articles 1–20