Positive solutions for some non-autonomous Schrödinger–Poisson systems G Cerami, G Vaira Journal of Differential Equations 248 (3), 521-543, 2010 | 401 | 2010 |

On concentration of positive bound states for the Schrödinger-Poisson problem with potentials I Ianni, G Vaira Advanced nonlinear studies 8 (3), 573-595, 2008 | 152 | 2008 |

Ground states for Schrödinger–Poisson type systems G Vaira Ricerche di matematica 60 (2), 263-297, 2011 | 92 | 2011 |

Cluster solutions for the Schrödinger-Poisson-Slater problem around a local minimum of the potential D Ruiz, G Vaira | 86 | 2011 |

Infinitely many positive solutions for a Schrödinger–Poisson system P d’Avenia, A Pomponio, G Vaira Nonlinear Analysis: Theory, Methods & Applications 74 (16), 5705-5721, 2011 | 61 | 2011 |

Solutions of the Schrödinger–Poisson problem concentrating on spheres, part I: necessary conditions I Ianni, G Vaira Mathematical Models and Methods in Applied Sciences 19 (05), 707-720, 2009 | 52 | 2009 |

Normalized concentrating solutions to nonlinear elliptic problems B Pellacci, A Pistoia, G Vaira, G Verzini Journal of Differential Equations 275, 882-919, 2021 | 41 | 2021 |

Large mass boundary condensation patterns in the stationary Keller–Segel system M del Pino, A Pistoia, G Vaira Journal of Differential Equations 261 (6), 3414-3462, 2016 | 33 | 2016 |

Sign-changing tower of bubbles for the Brezis–Nirenberg problem A Iacopetti, G Vaira Communications in Contemporary Mathematics 18 (01), 1550036, 2016 | 25 | 2016 |

Steady states with unbounded mass of the Keller–Segel system A Pistoia, G Vaira Proceedings of the Royal Society of Edinburgh Section A: Mathematics 145 (1 …, 2015 | 25 | 2015 |

Generalized Schrödinger–Newton system in dimension *N*⩾3: Critical caseA Azzollini, P d'Avenia, G Vaira Journal of Mathematical Analysis and Applications 449 (1), 531-552, 2017 | 23 | 2017 |

Sign-changing blowing-up solutions for the Brezis--Nirenberg problem in dimensions four and five A Iacopetti, G Vaira arXiv preprint arXiv:1504.05010, 2015 | 23 | 2015 |

Towering phenomena for the Yamabe equation on symmetric manifolds F Morabito, A Pistoia, G Vaira Potential Analysis 47, 53-102, 2017 | 22 | 2017 |

Non-radial sign-changing solutions for the Schrödinger–Poisson problem in the semiclassical limit I Ianni, G Vaira Nonlinear Differential Equations and Applications NoDEA 22, 741-776, 2015 | 21 | 2015 |

Existence of bound states for Schrödinger-Newton type systems G Vaira Advanced Nonlinear Studies 13 (2), 495-516, 2013 | 21 | 2013 |

Radial symmetry for a quasilinear elliptic equation with a critical Sobolev growth and Hardy potential F Oliva, B Sciunzi, G Vaira Journal de Mathématiques Pures et Appliquées 140, 89-109, 2020 | 15 | 2020 |

Bubbling solutions for supercritical problems on manifolds J Dávila, A Pistoia, G Vaira Journal de Mathématiques Pures et Appliquées 103 (6), 1410-1440, 2015 | 15 | 2015 |

Clustering phenomena for linear perturbation of the Yamabe equation A Pistoia, G Vaira Partial differential equations arising from physics and geometry, 311-331, 2019 | 12 | 2019 |

Nondegeneracy of the bubble for the critical p-Laplace equation A Pistoia, G Vaira Proceedings of the Royal Society of Edinburgh Section A: Mathematics 151 (1 …, 2021 | 10 | 2021 |

Segregated solutions for nonlinear Schrödinger systems with weak interspecies forces A Pistoia, G Vaira Communications in Partial Differential Equations 47 (11), 2146-2179, 2022 | 9 | 2022 |