Pytorch: An imperative style, high-performance deep learning library A Paszke, S Gross, F Massa, A Lerer, J Bradbury, G Chanan, T Killeen, ... Advances in neural information processing systems 32, 2019 | 51545 | 2019 |
End-to-end object detection with transformers N Carion, F Massa, G Synnaeve, N Usunier, A Kirillov, S Zagoruyko European conference on computer vision, 213-229, 2020 | 15046 | 2020 |
Training data-efficient image transformers & distillation through attention H Touvron, M Cord, M Douze, F Massa, A Sablayrolles, H Jégou International conference on machine learning, 10347-10357, 2021 | 7326 | 2021 |
Detectron2 Y Wu, A Kirillov, F Massa, WY Lo, R Girshick | 3222 | 2019 |
Dinov2: Learning robust visual features without supervision M Oquab, T Darcet, T Moutakanni, H Vo, M Szafraniec, V Khalidov, ... arXiv preprint arXiv:2304.07193, 2023 | 2397* | 2023 |
Mlperf inference benchmark VJ Reddi, C Cheng, D Kanter, P Mattson, G Schmuelling, CJ Wu, ... 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture …, 2020 | 621* | 2020 |
Pytorch: An imperative style, high-performance deep learning library, 2019 A Paszke, S Gross, F Massa, A Lerer, J Bradbury, G Chanan, T Killeen, ... arXiv preprint arXiv:1912.01703 10, 1912 | 400* | 1912 |
maskrcnn-benchmark: Fast, modular reference implementation of Instance Segmentation and Object Detection algorithms in PyTorch F Massa, R Girshick | 281 | 2018 |
Hybrid transformers for music source separation S Rouard, F Massa, A Défossez ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and …, 2023 | 160 | 2023 |
xformers: A modular and hackable transformer modelling library B Lefaudeux, F Massa, D Liskovich, W Xiong, V Caggiano, S Naren, M Xu, ... | 139 | 2022 |
Deep exemplar 2d-3d detection by adapting from real to rendered views F Massa, BC Russell, M Aubry Proceedings of the IEEE conference on computer vision and pattern …, 2016 | 120 | 2016 |
Crafting a multi-task cnn for viewpoint estimation M Francisco, M Renaud, A Mathieu Proceedings of the British Machine Vision Conference, 91.1-91.12, 2016 | 100* | 2016 |
Frame interpolation with multi-scale deep loss functions and generative adversarial networks J Van Amersfoort, W Shi, A Acosta, F Massa, J Totz, Z Wang, J Caballero arXiv preprint arXiv:1711.06045, 2017 | 54 | 2017 |
Computer vision–ECCV 2020 N Carion, F Massa, G Synnaeve, N Usunier, A Kirillov, S Zagoruyko, ... Proceedings of the 16th European Conference, Glasgow, UK, 23-28, 2020 | 39 | 2020 |
Flash-decoding for long-context inference T Dao, D Haziza, F Massa, G Sizov Online, 2023 | 24 | 2023 |
Convolutional neural networks for joint object detection and pose estimation: A comparative study F Massa, M Aubry, R Marlet arXiv preprint arXiv:1412.7190, 2014 | 24 | 2014 |
The vision behind mlperf: Understanding ai inference performance VJ Reddi, C Cheng, D Kanter, P Mattson, G Schmuelling, CJ Wu IEEE Micro 41 (3), 10-18, 2021 | 12 | 2021 |
Automatic 3d car model alignment for mixed image-based rendering R Ortiz-Cayon, A Djelouah, F Massa, M Aubry, G Drettakis 2016 Fourth International Conference on 3D Vision (3DV), 286-295, 2016 | 10 | 2016 |
Frame interpolation with multi-scale deep loss functions and generative adversarial networks J Van Amersfoort, W Shi, J Caballero, AAA Diaz, F Massa, J Totz, Z Wang US Patent 11,122,238, 2021 | 6 | 2021 |
Torchvision F Massa, S Chintala torchvision, 2017 | 6* | 2017 |