Follow
Lorenz Richter
Title
Cited by
Cited by
Year
Solving high-dimensional Hamilton–Jacobi–Bellman PDEs using neural networks: perspectives from the theory of controlled diffusions and measures on path space
N Nüsken, L Richter
Partial differential equations and applications 2 (4), 48, 2021
1152021
Solving high-dimensional parabolic PDEs using the tensor train format
L Richter, L Sallandt, N Nüsken
International Conference on Machine Learning, 8998-9009, 2021
582021
Variational characterization of free energy: Theory and algorithms
C Hartmann, L Richter, C Schütte, W Zhang
Entropy 19 (11), 626, 2017
552017
An optimal control perspective on diffusion-based generative modeling
J Berner, L Richter, K Ullrich
arXiv preprint arXiv:2211.01364, 2022
502022
VarGrad: a low-variance gradient estimator for variational inference
L Richter, A Boustati, N Nüsken, F Ruiz, OD Akyildiz
Advances in Neural Information Processing Systems 33, 13481-13492, 2020
422020
Variational approach to rare event simulation using least-squares regression
C Hartmann, O Kebiri, L Neureither, L Richter
Chaos: An Interdisciplinary Journal of Nonlinear Science 29 (6), 2019
342019
Improved sampling via learned diffusions
L Richter, J Berner
arXiv preprint arXiv:2307.01198, 2023
292023
Interpolating between BSDEs and PINNs: deep learning for elliptic and parabolic boundary value problems
N Nüsken, L Richter
arXiv preprint arXiv:2112.03749, 2021
232021
Early crop classification via multi-modal satellite data fusion and temporal attention
F Weilandt, R Behling, R Goncalves, A Madadi, L Richter, T Sanona, ...
Remote Sensing 15 (3), 799, 2023
202023
Robust SDE-based variational formulations for solving linear PDEs via deep learning
L Richter, J Berner
International Conference on Machine Learning, 18649-18666, 2022
192022
Nonasymptotic bounds for suboptimal importance sampling
C Hartmann, L Richter
SIAM/ASA Journal on Uncertainty Quantification 12 (2), 309-346, 2024
142024
Solving high-dimensional PDEs, approximation of path space measures and importance sampling of diffusions
L Richter
BTU Cottbus-Senftenberg, 2021
122021
Improving control based importance sampling strategies for metastable diffusions via adapted metadynamics
E Ribera Borrell, J Quer, L Richter, C Schütte
SIAM Journal on Scientific Computing 46 (2), S298-S323, 2024
82024
Error bounds for model reduction of feedback-controlled linear stochastic dynamics on Hilbert spaces
S Becker, C Hartmann, M Redmann, L Richter
Stochastic Processes and their Applications 149, 107-141, 2022
7*2022
Dynamical measure transport and neural pde solvers for sampling
J Sun, J Berner, L Richter, M Zeinhofer, J Müller, K Azizzadenesheli, ...
arXiv preprint arXiv:2407.07873, 2024
42024
Fast and unified path gradient estimators for normalizing flows
L Vaitl, L Winkler, L Richter, P Kessel
arXiv preprint arXiv:2403.15881, 2024
32024
From continuous-time formulations to discretization schemes: tensor trains and robust regression for BSDEs and parabolic PDEs
L Richter, L Sallandt, N Nüsken
Journal of Machine Learning Research 25, 1-40, 2024
22024
Model order reduction for (stochastic-) delay equations with error bounds
S Becker, L Richter
arXiv preprint arXiv:2008.12288, 2020
22020
Bridging discrete and continuous state spaces: Exploring the Ehrenfest process in time-continuous diffusion models
L Winkler, L Richter, M Opper
arXiv preprint arXiv:2405.03549, 2024
12024
Transgressing the Boundaries: Towards a Rigorous Understanding of Deep Learning and Its (Non-)Robustness
C Hartmann, L Richter
AI-Limits and Prospects of Artificial Intelligence 4, 43, 2023
1*2023
The system can't perform the operation now. Try again later.
Articles 1–20