kevin burrage
kevin burrage
Professor Computational Mathematics, Queensland University of Technology
Verified email at
Cited by
Cited by
Stability and convergence of the difference methods for the space–time fractional advection–diffusion equation
F Liu, P Zhuang, V Anh, I Turner, K Burrage
Applied Mathematics and Computation 191 (1), 12-20, 2007
Parallel and sequential methods for ordinary differential equations
K Burrage
Clarendon Press, 1995
Stochastic approaches for modelling in vivo reactions
TE Turner, S Schnell, K Burrage
Computational biology and chemistry 28 (3), 165-178, 2004
Binomial leap methods for simulating stochastic chemical kinetics
T Tian, K Burrage
The Journal of chemical physics 121 (21), 10356-10364, 2004
Stability criteria for implicit Runge–Kutta methods
K Burrage, JC Butcher
SIAM Journal on Numerical Analysis 16 (1), 46-57, 1979
Non-linear stability of a general class of differential equation methods
K Burrage, JC Butcher
BIT Numerical Mathematics 20 (2), 185-203, 1980
Restarted GMRES preconditioned by deflation
J Erhel, K Burrage, B Pohl
Journal of computational and applied mathematics 69 (2), 303-318, 1996
Oscillatory regulation of Hes1: discrete stochastic delay modelling and simulation
M Barrio, K Burrage, A Leier, T Tian
PLoS Comput Biol 2 (9), e117, 2006
ISIS, the intron information system, reveals the high frequency of alternative splicing in the human genome
L Croft, S Schandorff, F Clark, K Burrage, P Arctander, JS Mattick
Nature genetics 24 (4), 340-341, 2000
Stochastic models for regulatory networks of the genetic toggle switch
T Tian, K Burrage
Proceedings of the national Academy of Sciences 103 (22), 8372-8377, 2006
Fourier spectral methods for fractional-in-space reaction-diffusion equations
A Bueno-Orovio, D Kay, K Burrage
BIT Numerical mathematics 54 (4), 937-954, 2014
High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations
K Burrage, PM Burrage
Applied Numerical Mathematics 22 (1-3), 81-101, 1996
A special family of Runge-Kutta methods for solving stiff differential equations
K Burrage
BIT Numerical Mathematics 18 (1), 22-41, 1978
A Crank--Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation
F Zeng, F Liu, C Li, K Burrage, I Turner, V Anh
SIAM Journal on Numerical Analysis 52 (6), 2599-2622, 2014
Numerical methods for strong solutions of stochastic differential equations: an overview
K Burrage, PM Burrage, T Tian
Proceedings of the Royal Society of London. Series A: Mathematical, Physical …, 2004
Identifying optimal lipid raft characteristics required to promote nanoscale protein-protein interactions on the plasma membrane
DV Nicolau, K Burrage, RG Parton, JF Hancock
Molecular and cellular biology 26 (1), 313-323, 2006
Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term
F Liu, C Yang, K Burrage
Journal of Computational and Applied Mathematics 231 (1), 160-176, 2009
An efficient implicit FEM scheme for fractional-in-space reaction-diffusion equations
K Burrage, N Hale, D Kay
SIAM Journal on Scientific Computing 34 (4), A2145-A2172, 2012
Finite difference methods and a Fourier analysis for the fractional reaction–subdiffusion equation
C Chen, F Liu, K Burrage
Applied Mathematics and Computation 198 (2), 754-769, 2008
Analytical solutions for the multi-term time–space Caputo–Riesz fractional advection–diffusion equations on a finite domain
H Jiang, F Liu, I Turner, K Burrage
Journal of Mathematical Analysis and Applications 389 (2), 1117-1127, 2012
The system can't perform the operation now. Try again later.
Articles 1–20