Francesco Locatello
Francesco Locatello
PhD student, ETH Zürich, Max Planck Institute for Intelligent Systems
Verified email at
TitleCited byYear
Challenging common assumptions in the unsupervised learning of disentangled representations
F Locatello, S Bauer, M Lucic, G Rätsch, S Gelly, B Schölkopf, O Bachem
ICML 2019 - Proceedings of the 36th International Conference on Machine …, 2018
A Unified Optimization View on Generalized Matching Pursuit and Frank-Wolfe
F Locatello, R Khanna, M Tschannen, M Jaggi
AISTATS 2017 - Proceedings of the 20th International Conference on Artifcial …, 2017
Greedy Algorithms for Cone Constrained Optimization with Convergence Guarantees
F Locatello, M Tschannen, G Rätsch, M Jaggi
NIPS 2017 - Advances in Neural Information Processing Systems, 2017
A Conditional Gradient Framework for Composite Convex Minimization with Applications to Semidefinite Programming
A Yurtsever, O Fercoq, F Locatello, V Cevher
ICML 2018 - Proceedings of the 35th International Conference on Machine Learning, 2018
Boosting Variational Inference: an Optimization Perspective
F Locatello, R Khanna, J Ghosh, G Rätsch
AISTATS 2018 - Proceedings of the 21th International Conference on Artifcial …, 2017
Competitive Training of Mixtures of Independent Deep Generative Models
F Locatello, D Vincent, I Tolstikhin, G Rätsch, S Gelly, B Schölkopf
arXiv preprint arXiv:1804.11130, 2018
Deep Self-Organization: Interpretable Discrete Representation Learning on Time Series
V Fortuin, M Hüser, F Locatello, H Strathmann, G Rätsch
ICLR 2019 - Seventh International Conference on Learning Representations, 2018
On Matching Pursuit and Coordinate Descent
F Locatello, A Raj, SP Reddy, G Rätsch, B Schölkopf, SU Stich, M Jaggi
ICML 2018 - Proceedings of the 35th International Conference on Machine Learning, 2018
Boosting Black Box Variational Inference
F Locatello, G Dresdner, R Khanna, I Valera, G Rätsch
NeurIPS 2018 - Advances in Neural Information Processing Systems (Spotlight), 2018
Disentangling factors of variation using few labels
F Locatello, M Tschannen, S Bauer, G Rätsch, B Schölkopf, O Bachem
arXiv preprint arXiv:1905.01258, 2019
Are Disentangled Representations Helpful for Abstract Visual Reasoning?
S van Steenkiste, F Locatello, J Schmidhuber, O Bachem
arXiv preprint arXiv:1905.12506, 2019
The incomplete rosetta stone problem: Identifiability results for multi-view nonlinear ica
L Gresele, PK Rubenstein, A Mehrjou, F Locatello, B Schölkopf
UAI 2019 - Conference on Uncertainty in Artificial Intelligence, 2019
On the Fairness of Disentangled Representations
F Locatello, G Abbati, T Rainforth, S Bauer, B Schölkopf, O Bachem
arXiv preprint arXiv:1905.13662, 2019
On the Transfer of Inductive Bias from Simulation to the Real World: a New Disentanglement Dataset
MW Gondal, M Wüthrich, Đ Miladinović, F Locatello, M Breidt, V Volchkov, ...
arXiv preprint arXiv:1906.03292, 2019
Stochastic Conditional Gradient Method for Composite Convex Minimization
F Locatello, A Yurtsever, O Fercoq, V Cevher
arXiv preprint arXiv:1901.10348, 2019
Greedy Optimization and Applications to Structured Tensor Factorizations
F Locatello
ETH Zürich, Department of Computer Science, 2016
Optimization Convergence of Matching Pursuit Algorithms
F Locatello, M Tschannen, R Khanna, M Jaggi
SPARS 2017 1 (1.5), 1.5, 0
The system can't perform the operation now. Try again later.
Articles 1–17